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Abstract. Interest in renewable energy has grown rapidly, driven by widely held
concerns about energy sustainbility and security. At present, no single mode of re-
newable energy generation dominates and consideration tends to center on finding
optimal combinations of different energy sources and generation technologies. In
this context, it is very important that decision makers, investors and other stake-
holders are able to keep up to date with the latest developments, comparative ad-
vantages and future prospects of the relevant technologies. This paper discusses
the application of bibliometrics techniques for forecasting and integrating renew-
able energy technologies. Bibliometrics is the analysis of textual data, in this
case scientific publications, using the statistics and trends in the text rather than
the actual content. The proposed framework focuses on a number of important
capabilities. Firstly, we are particularly interested in the detection of technologies
that are in the early growth phase, characterized by rapid increases in the num-
ber of relevant publications. Secondly, there is a strong emphasis on visualization
rather than just the generation of ranked lists of the various technologies. This is
done via the use of automatically generated keyword taxonomies, which increase
reliability by allowing the growth potentials of subordinate technologies to be
aggregated into the overall potential of larger categories. Finally, by combining
the keyword taxonomies with a colour-coding scheme, we obtain a very useful
method for visualizing the technology “landscape”, allowing for rapidly evolving
branches of technology to be easily detected and studied.

1 Introduction

1.1 Motivation

The generation and integration of Renewable Energy is the subject of an increasing
amount of research. This trend is largely driven by widely held concerns about the en-
ergy sustainability and security and climate change. However, the relevant technical
issues are extremely diverse and cover the entire gamut of challenges ranging from the
extraction and/or generation of the energy, integration of the energy with existing grid
infrastructure and the coordination of energy generation and load profiles via appropri-
ate demand response strategies. For decision makers, investors and other stakeholders,



the sheer number and variety of the relevant technologies can be overwhelming. In ad-
dition this is an area which is evolving rapidly and a huge effort is required just to stay
abreast with current development.

All research fields are invariably composed of many subfields and underlying tech-
nologies which are related in intricate ways. This composition, or research landscape, is
not static as new technologies are constantly developed while existing ones become ob-
solete, often over very short periods of time. Fields that are presently unrelated may one
day become dependent on each others findings. Information regarding past and current
research is available from a variety of channels, providing both a difficult challenge as
well as a rich source of possibilities. On the one hand, sifting through these databases
is time consuming and subjective, while on the other, they provide a rich source of data
with which a well-informed and comprehensive research strategy may be formed.

1.2 Theoretical background

There is already a significant body of research on the topic of technology forecasting,
planning and bibliometrics. An in-depth review is beyond the scope of this article but
the interested reader is referred to [1–4].

In terms of the methodologies employed, interesting examples include visualizing
interrelationships between research topics [5, 6], identification of important researchers
or research groups [7, 8], the study of research performance by country [9, 10], the study
of collaboration patterns [11–13] and the analysis of future trends and developments
[14–16, 6]. It is also noteworthy that bibliometric techniques have been deployed on a
wide array of research domains, including ones which are related to renewable energies.
Some examples include thin film solar cells [17], distributed generation [18], hydrogen
energy and fuel cell technology [19, 20] and many others.

Our own research efforts have centered on the challenge of technology forecasting
[21, 22], on which this paper is focussed. However, in contrast to the large body of work
already present in the literature as indicated above, there is currently very little research
which attempts to combine the elements of technology forecasting and visualization.

In response to this apparent shortcoming, in [23] we described a novel framework
for automatically visualizing and predicting the future evolution of domains of research.
Our framework incorporated the following three key characteristics:

1. A system for automatically creating taxonomies from bibliometric data. We have
attempted a number of approaches for achieving this but the basic principle is to
create a hierarchical representation of keyword representations where terms that
co-occur frequently with one another are assigned to common subtrees of the tax-
onomy.

2. A set of numerical indicators for identifying technologies of interest. In particular,
we are interested in developing a set of simple growth indicators, similar to tech-
nical indicators used in finance. These growth indicators are specially chosen to
be easily calculated so that they can be readily applied to hundreds or thousands
of candidate technologies at a time. In contrast, traditional curve fitting techniques
are more complex and tend to incorporate certain assumptions about the shape in
which the growth curve of a technology should take. In addition, more complex
growh models require relatively larger quantities of data to properly fit.



3. A technique whereby the afore-mentioned taxonomies can be combined with the
growth indicators to incorporate semantic distance information into the technology
forecasting process. This is an important step as the individual growth indicators are
quite noisy. However, by aggregating growth indicators from semantically related
terms spurious components in the data can be averaged out.

In this paper we present further investigations into the use and effectiveness of this
framework, particularly in terms of the growth indicators used as well as a more intuitive
method of visualizing the scores corresponding to each technology.

2 Analytical framework

We now describe the framework which will be used to conduct the technology fore-
casting. However, it is important to first define the form of forecasting that is intended
in the present context. It should be pointed out that it is not “forecasting” in the sense
of a weather forecast, where specific future outcomes are intended to be predicted with
a reasonably high degree of certainty. It is also worth noting that certain tasks remain
better suited to human experts; in particular, where a technology of interest has already
been identified or is well known, we believe that a traditional review of the literature
and of the technical merits of the technology would prove superior to an automated
approach.

Instead, the framework proposed in [21] targets the preliminary stages of the re-
search planning exercise by focussing on what computational approaches excel at: i.e.
scanning and digesting large collections of data, detecting promising but less obvious
trends and bringing these to the attention of a human expert. This overall goal should be
borne in mind as, in the following subsections, we present and describe the individual
components which constitute the framework.

Figure 1 depicts the high-level organization of the system. As can be seen, the aim
is to build a comprehensive technology analysis tool which will collect data, extract
relevant terms and statistics, calculate growth indicators and finally integrating these
with the keyword taxonomies to produce actionable outcomes. To facilitate discussion,
the system has been divided into three segments:

1. Data collection and term extraction (labelled (a) in the figure)
2. Prevalence estimation and calculation of growth indicators (labelled (b))
3. Taxonomy generation and integration with growth indicators (labelled (c))

These components are explained in the following three subsections.

2.1 Data collection and term extraction

This consists of the the following two stages:

– Data collection The exact collection mechanism, type and number of data sources
used are all design parameters that be modified based on user requirements and
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Fig. 1. Analytical framework[23]

available resource. However, for the implementation presented in this paper this in-
formation was extracted from the Scopus1 publication database. Scopus is a subscription-
based, professionally curated citations database provided by Elsevier. For the re-
sults described in this paper, a total of 119,393 document abstracts were collected
and processed for subsequent analysis.
Other possible sources of bibliometrics data that were considered include Google’s
scholar search engine and ISI’s Web of Science database. However, Scopus proved
to be a good initial choice as it returned results which were of a generally high
quality both in terms of the publications covered and relevance to search terms.
In addition, the coverage was sufficiently broad such that searches submitted to
Scopus were normally able to retrieve a reasonable number of documents.

– Term extraction is the process of automatically generating a list of keywords on
which the technology forecasting efforts will be focussed. Again, there are a vari-
ety of ways in which this can be achieved; we have experimented with a number
of these and our experiences have been thoroughly documented in [24]. For the
present demonstration the following simple but effective technique is used: for each
document retrieved, a set of relevant keywords is provided. These are collected and,
after word-stemming and removal of punctuation marks, sorted according to num-
ber of occurrences in the text. For the example results shown later in this paper, a
total of 500 keywords have been extracted and used to build the taxonomy.

2.2 Identification of early growth technologies

There are actually two steps to this activity. The first is to find a suitable measure for the
“prevalence” of a given technology within the particular context being looked at. In the

1 http://www.scopus.com



context of an academic publications database, this would refer to the size of the body
of relevant publications appearing each year which in turn would serve as an indicator
of the amount of attention that the technology in question receives from the academic
community.

For a variety of reasons achieving this directly is not straightforward but a work-
able alternative would be to search for the occurrence statistics of terms relevant to the
domain of interest. To allow for changes (mainly growth) in overall publication num-
bers over time, the term frequency is used instead of the raw occurrence counts. This is
defined as:

TFi =
ni∑
j∈I nj

(1)

where, ni is the number of occurrences of keywords i, and I is the set of terms appear-
ing in all article abstracts (this statistic is calculated for each year of publication to ob-
tain a time-indexed value). Once the term frequencies for all terms have been extracted
and saved, they can be used to calculate growth indicators for each of the keywords and
hence the associated technologies.

As stated previously, we are most interested in keywords with term frequencies that
are relatively low at present but that have been rapidly increasing, which will henceforth
be referred to as the “early growth” phase of technological development. Focusing on
this stage of technological development is particularly important because we believe
that it represents the fields to which an expert would most wish to be alerted since he
or she would most likely already be aware of more established research areas while
techologies with little observable growth can be deemed to be of lower potentil.

Existing techniques are often based on fitting growth curves (see [25] for example)
to the data. This can be difficult as the curve-fitting operation can be very senstive to
noise. Also, data collected over a relatively large number of years (approximately ≥ 10
years) is required, whereas the emergence of novel technological trends can occur over
much shorter time-scales.

The search for suitable early growth indicators is an ongoing area of research but
for this paper we consider the following two indicators as illustrative examples:

ηi =
[TFi[y2] + TFi[(y2 + 1)]]

[TFi[y1] + TFi[(y1 + 1)]]
(2)

θi =

∑
t∈[y1,y2]

t.TFi[t]∑
t∈[y1,y2]

TFi[t]
, (3)

where, ηi and θi is the two different measures of growth for keyword i, TFi[t] is the
term frequency for term i and year t while y1 and y2 are the first and last years in the
study period.

Hence, ηi gives the ratio of the TF at the end of the study period to the TF at the start
of the period, where two year averages are used for the TF terms for improved noise
rejection. In contrast, θi gives the average publication year for articles appearing over
the range of years being studied and which are relevant to term i (a more recent year
indicates greater currency of the topic). Using these different expressions provides two
separate ways of measuring growth “potential” and helps to avoid confounding effects
that may be peculiar to either of these measures.



2.3 Keyword taxonomies and semantics enriched indicators

One of the problems encountered in earlier experiments involving technology forecast-
ing is that of measuring technology prevalence using term occurrence frequencies. This
involves the fundamental problem of inferring an underlying, unobservable property (in
this case, the size of the relevant body of literature) using indirect measurements (hit
counts generated using a simple keyword search), and cannot be entirely eliminated.

However, one aspect of this problem is a semantic one where individual terms may
have two or even more meanings depending on the context. Through our framework
an approach was proposed in [23] through which this effect may be reduced. The basic
idea is that hit counts associated with a single search term will invariably be unreliable
as the contexts in which this term appear will differ. Individual terms may also suffer
from the problem of extraneous usage, as in the case of papers which are critical of the
technology it represents.

However, if we can find collections of related terms and use aggregate statistics
instead of working with individual terms, we might reasonably expect that this problem
will be mitigated. We concretize this intuition in the form of a predictive taxonomy;
i.e. a hierarchical organization of keywords relevant to a particular domain of research,
where the growth indicators of terms lower down in the taxonomy contribute to the
overall growth potential of higher-up “concepts” or categories.

– Taxonomy generation - Taxonomies can sometimes be obtained from external
sources and can either be formally curated or “scraped” from online sources such
as Wikipedia [26].
While many of the taxonomies obtained in this way may be helpful for the tech-
nology forecasting process, in other cases a suitable taxonomy may simply not
be available, or even if available is either not sufficiently updated or is extremely
expensive, thus limiting the wider adoption and use of resulting applications. As
such, an important capability that has been a focus of our research is the develop-
ment of a method to perform automated creation of keyword taxonomies based on
the statistics of term occurrences.
A detailed discussion of this topic is beyond the scope of this paper However, it
is sufficient to focus on the basic idea which, as indicated in section 1 is to group
together terms which tend to co-occur frequently. Again, we have tested a number
of different ways of achieving this (two earlier attempts are described in [27, 23]
and we have also conducted a survey into different methods of perform taxonomy
construction [22]), but in the present context we discuss results produced using
one particular method which was found to produce reasonable results while being
scalable to large collections of keywords.
This is based on the algorithm described in [28] which was originally intended for
social networks where users annotate documents or images with keywords. Each
keyword or tag is associated with a vector that contains the annotation frequencies
for all documents, and which is then comparable, for e.g. by using the cosine simi-
larity measure. We adapt the algorithm to general taxonomy creation by using two
important modifications; firstly, instead of using the cosine similarity function, the
asymmetric distance function proposed in [23] is used (this is based on the “Google



distance” proposed in [29]):

−−−→
NGD(tx, ty) =

log ny − log nx,y
logN − log nx

, (4)

where tx and ty are the two terms being considered, and nx, ny and nx,y are the
occurrence counts for the two terms occurring individually, then together in the
same document respectively. Note that the above expression is “asymmetric” in
that
−−−→
NGD(tx, ty) refers to the associated cost if tx is classified as a subclass of ty ,

while
−−−→
NGD(ty, tx), corresponds to the inverse relationship between the terms.

The algorithm consists of two stages: the first is to create a similarity graph of
keywords, from which a measure of “centrality” is derived for each node. Next, the
taxonomy is grown by inserting the keywords in order of decreasing centrality. In
this order, each unassigned node, ti, is attached to one of the existing nodes tj such
that:

j = argmin
j∈T

−−−→
NGD(ti, tj), (5)

(where T is the set of terms which have already been incorporated into the taxon-
omy.)
In addition, two further customizable optimizations were added to the basic algo-
rithm described above to improve stability, these are:
1. Attachment of a node to a parent node is based on a weighted average of the

similarities to the parent but also to the grandparents and higher ancestors of
that node.

2. On some occasions it was necessary to include a “child penalty” whereby the
cost of attaching to a given parent increases once the number of children of that
parent exceeds a certain number.

These measures and the associated parameters haven’t yet been fully explored and
in general are set by ad-hoc experimentation. As such they are not discussed in
detail in the present context but are the subject of intense further investigations and
will be explained in greater detail in future publications.

– Enhancement and visualization of early growth indicators Once the keyword
taxonomies have been constructed, they provide a straightforward method of en-
hancing the early growth indicators using information regarding the co-occurrence
statistics of keywords within the document corpus. As with almost all aspects of
the proposed framework, a number of variants are possible but the basic idea is to
re-calculate the early growth scores for each keyword based on the aggregate scores
of each of the keywords contained in the subtree descended from the corresponding
node in the taxonomy.
For the results presented in this paper, aggregation was achieved by simply averag-
ing the respective nodes’ scores together with the scores of all child nodes. How-
ever, other schemes have also been considered, for example ones which emphasize
the score of the current node over the child nodes.

– Visualization - The final piece of the puzzle is the development of a good method
for representing the results of the above analysis in an intuitive and clear way. A
common method for presenting information like this is in the form of a ranked list,



which in theory would allow high scoring items to be easily prioritized. However,
in practice this can very often produce very misleading results. This is particu-
larly true in our specific application where the target is to study a large numbers
of keywords, many of which are closely related. In such a scenario, merely sorting
the keywords by their respective scores would most likely result in closely related
terms “clumping up” on these lists.

In contrast, the keyword taxonomy provides a natural alternative framework for
achieving this. Firstly, the taxonomy itself allows for relations between the different
taxonomies to be easily and quickly grasped. For the growth potentials, we have
been experimenting with different ways of representing this information directly
within the taxonomies. One simple way is to use a colour-coding scheme where
“hot” technologies are coded red (for instance), and there is a range of colours
leading up to “cold” technologies in blue. This, in combination with the keyword
smoothing step from above means that actively growing areas of researching should
turn up as red patches within the taxonomies which can then be detected easily and
quickly.

2.4 Renewable energy case study

While this framework can potentially be used on any research domain, we conduct a
pilot study on the field of renewable energy to provide a suitable example on which
to conduct our experiments and to anchor our discussions. The incredible diversity
of renewable energy research as well as the currency and societal importance of this
area of research makes it a rich and challenging problem domain on which we can test
our methods. Besides high-profile topics like solar cells and nuclear energy, renewable
energy related research is also being conducted in fields like molecular genetics and
nanotechnology.

To collect the data for use in this pilot study, a variety of high-level keywords related
to renewable energy (listed in section 3.1) were submitted to Scopus, and the abstracts
of the retrieved documents were collected and used. In total, 119, 393 abstracts were
retrieved and subsequently ordered by year of publication.

A number of discussions were held with subject matter experts to identify domains
which were both topically current and of high value in the renewable energy indus-
try. The selected domains were Photovoltaics (Solar Panels), Distributed Generation,
Geothermal, Wind Energy and Biofuels. Search terms corresponding to each of these
domains were then collected and submitted to Scopus’ online search interface. These
were:



Renewable Energy
Biodiesel
Biofuel
Photovoltaic
Solar Cell
Distributed Generation
Dispersed Generation
Distrubted Resources

Embedded Generation
Decentralized Generation
Decentralized Energy
Distributed Energy
On-site generation
Geothermal
Wind Power
Wind Energy

3 Results and discussions

We present results for the renewable energy case study. As described in section 2.1, the
Scopus database was used to collect a total of 500 keywords which were relevant to the
renewable energy domain, along with 119, 393 document abstracts. These keywords
were then used to construct a taxonomy as described in section 2.3, and the growth
scores η and θ for each keyword was calculated as shown in equations (2) and (3)
respectively.

The two sets of scores thus produced are ranked and the top 30 items from each are
presented in 1. These scores were subsequently subjected to the taxonomy based aggre-
gation procedure described in Section 2.3, producing two further ranked lists which are
then presented in Table 2.

Based on these results, some observations are:

1. There were significant differences between the scores obtained using the different
growth scoring systems, as well as with and without aggregation, as can be seen
from the top-30 lists in Tables 1 and 2. However, at the same time there were also
broad similarities between the two sets of rankings which pointed to the underlying
“ground truth” which these rankings target. as evidenced by a large number of
keywords which appeared the top ten items in both lists.

2. In fact, for the aggregated scores, the top six items on both lists are the same (though
there were slight differences in the orderings of the terms within this top six set).
These were: cytology, nonmetal, semiconducting zinc compounds, hydraulic ma-
chinery, hydraulic motor, alga. It is interesting to note that these terms correspond
to important research topics within three separate sub-domains of renewable energy
- biomass, solar cells and wind power.

3. It was interesting to note the number of biotechnology related keywords that were
found in all four lists. This reflects the fact that biological aspects of renewable en-
ergy are amongst the most rapidly growing areas of research. Amongst the highly-
rated non-biological terms on the list were “nonmetal” (#2) and “seminconducting
zinc compounds” (#3), both of which are related to the field of thin-film photo-
voltaics.

4. However, many of the keywords in the lists in Tables 1 and 2 were associated with
leaves in the taxonomy; this was a desirable outcome, as these were the less well



known and hence more interesting technologies, but it also meant that the confi-
dence in the scores were lower. Looking at the terms with relatively large asso-
ciated subtrees, we see that three of the largest were “biological materials” (15
nodes), “fermenter” (7 nodes) and “hydrolysis” (4 nodes). The subtrees for the first
two terms are shown in figures 2 and 3 respectively, while the hydrolysis subtree is
actually part of the “fermenter” subtree and as such is not displayed.

5. The fermenter subtree is clearly devoted to biofuel related technologies (in fact, two
major categories of these technologies are represented - “glucose”-related or first
generation biofuels, and “cellulosic” biofuels which are second generation fuels.
The biological materials subtree is less focussed but it does emphasize the impor-
tance of biology to renewable energy research. The “soil” branch of this subtree
is devoted to ecological issues, while the “chemical reaction” branch is associated
with gasification (waste-to-energy, etc.) research.

6. As explained in section 2.3, we also tested out a colour-coding scheme where nodes
were assigned colours ranging from red through white down to blue, corresponding
to the range of high to low growth technologies. This scheme was implemented and
it was demonstrated to be capable of representing the results of the analysis in a
highly visual and intuitive manner, in particular allowing for high growth “areas” to
be identified, as opposed to focusing on individual nodes. The resulting figures are
too big to be able to fit into the current format but examples of posters which were
created using this technique can be viewed at: http://www.dnagroup.org/posters/.

Fig. 2. Subtree for node “Biological materials”

3.1 Implementation details

The framework described here was implemented using the Python programming lan-
guage. Data collection was semi-automatic and consisted of two main steps:



Growth Ratio (η)
1. cytology
2. biological materials
3. nonmetal
4. leakage (fluid)
5. solar equipment
6. semiconducting zinc compounds
7. direct energy conversion
8. hydraulic machinery
9. hydraulic motor
10. potential energy
11. alga
12. computer networks
13. bioreactors
14. ecosystems
15. bioelectric energy sources
16. solar power plants
17. soil
18. metabolism
19. concentration process
20. solar power generation
21. wastewater
22. sugars
23. nonhuman
24. experimental studies
25. zea mays
26. cellulose
27. priority journal
28. organic compounds
29. biomass
30. lignin

Average publication year (θ)
1. cytology
2. biological materials
3. nonmetal
4. solar equipment
5. semiconducting zinc compounds
6. leakage (fluid)
7. direct energy conversion
8. potential energy
9. alga
10. hydraulic machinery
11. hydraulic motor
12. ecosystems
13. bioelectric energy sources
14. solar power plants
15. soil
16. bioreactors
17. concentration process
18. solar power generation
19. metabolism
20. wastewater
21. sugars
22. computer networks
23. nonhuman
24. experimental studies
25. organic compounds
26. priority journal
27. biomass
28. lignin
29. zea mays
30. cellulose

Table 1. Top 30 Renewable Energy Related Technology Keywords, based on (left) growth ratio
(right) average publication year (raw scores)



Growth Ratio (η)
1. cytology
2. nonmetal
3. semiconducting zinc compounds
4. hydraulic machinery
5. hydraulic motor
6. alga
7. direct energy conversion
8. computer networks
9. solar equipment
10. bioreactors
11. cell
12. biological materials
13. metabolism
14. concentration process
15. zinc oxides
16. potential energy
17. sugars
18. ecosystems
19. bioelectric energy sources
20. experimental studies
21. zea mays
22. soil
23. cellulose
24. lignin
25. hydrolysis
26. photovoltaic cell
27. fermenter
28. glucose
29. glycerol
30. adsorption

Average publication year (θ)
1. cytology
2. nonmetal
3. semiconducting zinc compounds
4. alga
5. hydraulic machinery
6. hydraulic motor
7. bioreactors
8. concentration process
9. metabolism
10. sugars
11. computer networks
12. experimental studies
13. ecosystems
14. direct energy conversion
15. lignin
16. zea mays
17. bioelectric energy sources
18. phosphorus
19. biological materials
20. cellulose
21. nitrogenation
22. bacteria (microorganisms)
23. adsorption
24. soil
25. hydrolysis
26. glycerol
27. fermenter
28. glucose
29. potential energy
30. biodegradable

Table 2. Top 30 Renewable Energy Related Technology Keywords, based on (left) growth ratio
(right) average publication year (with aggregation)



Fig. 3. Subtree for node “fermenter”

1. Customized keyword queries were first submitted to the Scopus search portal. The
results of these searches were then exported as comma-delimited (*.csv) files and
downloaded from the Scopus website.

2. Automated scripts were then created to filter and store the records in a local SQL
database (we used the SQLite database system). These which were subsequently
accessed using the python SQLite toolkit and appropriate SQL language calls.

Figures were generated using the pydot toolkit which provides a Python based in-
terface to the Graphviz Dot language2.

4 Conclusion

In this paper, we present the use of an innovative framework for visualizing the research
“landscape” of the domain of renewable energy. Sucha framework will be extremely
useful for supporting the relevant research planning and decision-making processes.

The system covers the entire chain of activities starting with the collection of data
from generic information sources (online or otherwise), the extraction of keywords of
interest from these sources and finally the calculation of semantically-enhanced “early
growth indicators”. Finally, a colour-coding scheme is used to annotate the resulting
taxonomies, allowing rapidly growing areas of research to be easily detected within the
overall context of the research domain.

The simple implementation of this framework presented in this paper is used to
study developments within the domain of renewable energy. More analysis is required
before deeper insights can be gained and these results can be applied “on the field” by
investors and other stakeholders. However, we note that the results of the analysis do
seem to reflect factors and developments within the field of renewable energy.

2 code.google.com/p/pydot/



The results of this effort are presented and discussed. While the current implemen-
tation still has ample scope for future extensions, the results are already encouraging
though currently the process is still a little too noisy to pick out “very early growth”
technologies. However, we are investigating numerous avenues for enhancing the basic
implementation referenced here, and are confident of presenting improved findings in
upcoming publications.
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