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Abstract—Localization precision remains active and open chal-
lenge in the area of wireless networks. For static network we
develop model free approach of localization technique that by-
passes the tedious modeling of diverse aspects to the contributing
factor of localization errors, namely simultaneous perturbation
stochastic approximation (SPSA) localization technique. The
improved version of SPSA, simultaneous perturbation stochastic
approximation by neighbor confidence (SPSA-NC) addresses
error propagation of iterative localization controlled by incor-
porating a neighbor confidence matrix. The centralized SPSA
and SPSA-NC does not scale well for the mobile environment
due to the messaging requirements of repeated updates. We take
distributed approaches to implement the aforementioned local-
ization techniques for mobile devices by distributed simultaneous
perturbation stochastic approximation (DSPSA) and distributed
simultaneous perturbation stochastic approximation by neighbor
confidence (DSPSA-NC) respectively; compare the results with
the centroid (C) and weighted centroid (WC) localization tech-
niques and show superiority of our methods.

Index Terms—Localization, mobile environment, constrained
optimization, simultaneous perturbation stochastic approxima-
tion, neighbor confidence.

I. INTRODUCTION

Besides the importance of the location in relations to

the sensed values, locations are utilized in various protocols

and algorithms such as routing, clustering, topology control,

coverage and others. Straightforward incorporation of GPS

into all the devices is costly; GPS receivers require line-of-

sight to GPS satellites; and finally GPS is unacceptably power

hungry.

Localization techniques therefore evolve as alternate ap-

proaches to GPS. Here, a small subset of nodes with known

locations (anchor nodes) along with the measured distances

and/or angles are used to derive the unknown locations

of the non-anchor nodes. Receive signal strength indicator

(RSSI) [1], time of arrival (ToA) [2], time difference of

arrival (TDoA) [3], and angle-of-arrival (AoA) [4] are the

fundamental approaches to localizations in the literature.

Unfortunately each of the aforementioned approaches suf-

fers from its own limitations. For example, RSSI-based es-

timation has high error in the derived distances contrarily

AoA-based approach has reasonable accuracy with a higher

device cost. Localization algorithm using the measurements

requires be robust enough overcoming the adverse effect of the

erroneous measurements. In practice localization algorithms

commonly suffer from high localization errors where diverse

aspects are liable for contributing to this error.

To address the limitations of the localization techniques

we therefore develop a few variants localization techniques

by utilizing a suitable optimization technique named simulta-

neous perturbation stochastic approximation (SPSA) [5] that

minimizes the estimation error of approximation-based local-

izations.

Contributions: This paper presents distributed simulta-

neous perturbation stochastic approximation (DSPSA) and

distributed simultaneous perturbation stochastic approximation

by neighbor confidence (DSPSA-NC) attempting to address

the issues: (i) minimizing estimation errors (ii) addressing flip

ambiguity (iii) controlling error propagating in iterations and

(iv) providing mobility support.

The rest of the paper organized as follows. Section II

presents a background of localization algorithms related to

our proposals. Section III gives the technical description of

the developed localization methods. Sections IV and V present

the simulation results and concludes the paper, respectively.

II. BACKGROUND

A large number of localization techniques have been pro-

posed in the literature [6], [7], [8], [9], [10]. The follow-

ing subsections briefs some of such localizations where our

proposed algorithms provide improvements compared to the

counterparts.

Minimizing Estimation Errors: RSSI-based localizations

techniques such as maximum likelihood (ML) location esti-

mation technique [11] and simulated annealing (SA)-based

localization [12] utilize minimum mean square error (MMSE)

and simulated annealing approach respectively to minimize

location errors. ML suffers from poor localization accuracy

for small neighbor set. Cross-Entropy (CE) localization tech-

nique [13], utilizes the cross-entropy method [14] in location

estimation similar to SA with less computing power. Unfortu-

nately both suffer from the well-known flip ambiguity.

Flip Ambiguity: Reference [15] attempts to address the

flip ambiguity problem by quantifying the likelihood of flip

through neighborhood geometric analysis. This analysis de-

tects the flips and improves the error performance by eliminat-



ing the flips. Reference [16] handles the flip ambiguity prob-

lem by collinearity analysis. It also provides 3-connectivity of

localizability to 2-connectivity by utilizing distance conflicts

and eliminating ambiguity. Reference [17] proposes refinement

techniques by correction operation where the underlying tech-

nique incorporates stochastic optimization through simulated

annealing and genetic algorithm. A distributed variant of

the solution is also provided with comparatively low accu-

racy. Our SPSA family of localizations handles the issue by

constrained minimization technique utilizing penalty function

method [18],[19].

Error Propagation: Localization by iterative least-square

(ILS) provides error management for the least square location

estimation technique [20], [21] where error is controlled by

three basic criteria (i) error characterization on estimated

locations (ii) neighbor selection and (iii) update criterion.

SPSA-NC/DSPSA-NC rather avoids such modeling aspects

and estimates the confidence of the neighbor nodes.

Mobility Support: A number of localization techniques

are developed for static environment and centralized in nature

where the location is estimated in the central location. SA,

SPSA, SPSA-NC etc. are the examples of such static cen-

tralized localizations. In mobile environment the requirement

of repetitively feeding the centralized node with measured

angles and distances and updating the whole network with the

derived locations becomes highly costly if not impractical. Our

proposed DSPSA and DSPSA-NC handles such issue while

preserving the strengths of the localization techniques of SPSA

and SPSA-NC respectively.

Training of Algorithm: A number of localization algo-

rithms find locations of the mobile devices using training

phases [22], [23], [24], [25], [26]. We intentionally avoid such

training due to its inconvenience even though such training

based localization may provide good error performance in

some cases.

III. THE SPSA ALGORITHMS

This section deals with the SPSA family of localization

algorithms consist of (i) fundamental SPSA and SPSA-NC

localizations and (ii) customized and modified, mobile device-

based algorithms DSPSA and DSPSA-NC techniques.

Let a set of N total nodes deployed in the field defined as

n1 : nN . And let the set of A anchors defined as nN−A :
nN has their locations perfectly known and is a subset of the

aforementioned set. The localization problem attempts to find

the [xi, yi] coordinates of node ni where i = 1 : N −A.

Fig. 1 depicts various functionalities of the SPSA family of

localization. Where, Fig. 1(a) shows the virtual world on an

interested node, Fig. 1(b) shows how a wrongly derived loca-

tion is penalized and corrected, Fig. 1(c) shows the building

blocks of the neighbor confidence and finally, Fig. 1(d) depicts

the function block diagram of the SPSA family of localization

techniques.

A. SPSA

Handling the localization problem commonly viewed as

approximation problem of the unknown locations. The inputs

to the approximation algorithm are mostly the neighbor dis-

tances and angles measured by hardware based on the signal

strengths, directions and/or time difference of send-receive

packets. A distance based localization algorithm calculates

the distances from the approximated locations denoted as d̂i,j
compare them with the measured distances denoted as di,j and

attempt to minimize the sum of differences between the two

in an iterative fashion. Note that i and j represents the node

i and node j in the neighborhood. The set of neighbors to

node i is denoted as Ni. Therefore the cost function of the

approximation techniques can be represented as

τ =
∑

j∈Ni

|d̂ij − dij | (1)

The aforementioned cost function suffers from two different

types of limitations (i) cannot handle flips (ii) has no control

on error propagation over rounds.

Note that flip occurs when a subset of nodes in the neighbor-

hood is collinearly located. And a node or a set of node thereby

wrongly estimated at the opposite side of the line. SPSA

handles the flips by identifying the flips from the neighbor

sets and penalize the flipped node. Penalty incorporated (i) if

a neighbor node from the neighbor set finds the node estimated

location is outside the neighbor radio range (ii) if a non-

neighbor finds the node estimated location is inside the node

radio range. The algorithm is such design that it pulls the

wrongly estimated node location towards the neighborhood

it belongs to as well pushing the node location outside the

wrongly estimated neighborhood.

If set of neighbors and set of non-neighbors of node i in the

network are denoted as Ni and N̄i. The transmission range

of the nodes is detonated as ℜ. Therefore the optimization

problem can be written as minimizing of

ψi =
∑

j∈Ni
(d̂ij − dij)

2

such that d̂ip ≤ ℜ ∀p ∈ Ni and

d̂iq > ℜ ∀q ∈ N̄i

(2)

Recall that the measured and estimated distances are denoted

as di,j and d̂i,j respectively. Consequently the cost function

can be expressed as Eq. (3) in the logarithmic penalized

paradigm.

τ =
∑

j∈NTi

|d̂ij − dij |+ rk ·
∑

j∈(NTi∩NDi)

| ln(−|d̂ij −ℜ|)|

+ rk ·
∑

j∈(NDi∩NTi)

| ln(−|d̂ij −ℜ|)| (3)

Here, the penalty parameter denoted as rk is a monotonically

increasing function depends on rounds. Two sets of neighbors

of node i (i) true neighbor set (denoted as NTi) from hello

message (ii) derived neighbor set (denoted as NDi) from

the estimated locations are obtained and incorporated in the

penalty.



Fig. 1. (a) Interested neighborhood of a node in the whole network. (b) Correcting forces on the flipped node by the neighborhood. (c) Deriving neighbor
confidence (NC) from confidence on estimated locations (CEL) and confidence on measured distances (CMD). (d) Functional block diagram of the algorithms.

B. SPSA-NC

SPSA-NC, while incorporating the aforementioned penalty

additionally handles the iterative error propagation by intro-

ducing a node confidence metric. Note that, the contributing

factor of the error is twofold (i) error in distance measure-

ment and (ii) error in estimated location. SPSA-NC therefore

defines neighbor confidence matrix and handles both of them

gracefully.

1) Deriving Neighbor Confidence: One of the most im-

portant problems with iterative localization algorithms is the

error propagates in successive rounds. Here, we deal with

well diversified and hard to model aspects of variable errors.

The contributing factor is not limited to neighbor node type

(anchor/non-anchor), hop distances from anchors, distances

in meters from the nodes, radio range, % of anchor deploy-

ments, even the specific relative location patterns and wireless

conditions. Utilizing the entire aforementioned criterion by

modeling and incorporating makes the system rather extremely

complex and impractical. Handling all the aforementioned

criteria is handled by the neighbor confidence matrix in turn

deals with input variables of SPSA engine.

Confidence on Estimated Locations (CEL): The relative

measure of confidence provides the answer to the question

how reliable the estimated location is. Simple modification on

SPSA localization (a two dimensional estimation of (xi, yi))
by making it a three dimensional approach in SPSA-NC makes

the localization technique estimates the confidence on the

estimated location and provides (ψξi, xi, yi). Note that the

confidence of an anchor node is always one as it is a true

location.

Confidence on Measured Distances (CMD): Unlike CEL

(belongs to each node) CMD belongs to each link and is

measured as normalized inverse distance of two neighbors.

ψζij is therefore the confidence parameter measured at node

i concerning neighbor node j. In case of a flip a new pair

may be created by the localization technique as the estimation

of the distance becomes less than the radio range. With the

incorporation of the penalty intern force the pair dismissed in

rounds.

Neighbor Confidence (NC): NC provides answer to the

question how much we believe the specific neighbor for its

derived location and distance information while evaluating

the current node location in this particular algorithmic run.

Therefore in practice NC becomes is the normalized sum of

the two aforementioned confidence measures, CEL and CMD.

Being a function of a global and a local, parameter NC in



turn becomes a local parameter fed to the SPSA. Note a

relative confidence factor (rc) is introduced as weight to bridge

between the two factors. Therefore the final NC can be derived

by Eq. (4)

ψij =
ψmax ξij

ψξij

+ rc ·
|d̂ij − dij |

ψmax ζij

(4)

C. Distributed SPSA (DSPSA) and Distributed SPSA-NC

(DSPSA-NC)

The superiority of the SPSA and SPSA-NC is restricted to

the static sensor networks as they require all the distance and

anchor information of the network. In mobile environment as

the relative distances of the nodes are continuously changing

it becomes costly and impractical to update information con-

tinuously to the whole network.

We attempt to retain the strength of the localization

techniques of SPSA and SPSA-NC and modify them to a

distributed approach cope with the mobile environment by

limiting the information flow up to two-hop neighborhood.

Nodes refresh the neighbors with its information with some

predefined intervals upon receiving the updated information.

Alternately nodes maintain their own world only up to two

hops makes it scalable for the mobile environment.

D. Localization Techniques

The SPSA-based iterative localization techniques start with

randomly initializing locations in the [x, y] coordinates of all

nodes in the network. Algorithms randomly select a single

node of interest at that particular run and calls SPSA opti-

mization engine for approximating the node location based

on the neighbor distances. Localization algorithm then selects

a second node upon updating the location information from

SPSA engine. The iteration continues until the correction

becomes less than a predefined threshold. The threshold should

set to reasonably small to get a suitable result.

Optimization Engine: We take the simultaneous pertur-

bation stochastic optimization as a tool to minimize the

estimated locations of the non-anchor nodes in the field. The

core strength of the tool is it does not require modeling the

gradient of the cost function. Note that modeling for handling

the different contributing factors are tedious in localization

perspective due to a large number of contributing factors.

Even though a gradient estimation is not required in this

method, the performance remains as good as the gradient-

based approaches. And finally, SPSA optimization is capable

of handling erroneous measurements. Note that, common

distance measuring techniques (signal strength-based, time

of arrival-based and time difference of arrival cases) always

delivers erroneous measurements.

Optimization Procedure: The fundamental problem to the

core optimization technique is to minimize the differentiable

cost functions defined earlier. The algorithms utilize a general

recursive procedure to estimate the desired parameter (location

and/or confidence in this specific case) by iterative random

perturbations and gradient estimations. The perturbations and

gradient estimations are detailed in [5], [18], [19].

Notes: Even with the limited world of each node the

algorithm DSPSA and DSPSA-NC are not suitable for im-

plementing in tiny sensors. Rather our attempt is to utilize the

strength of SPSA and SPSA-NC-based static sensor network

localization into smart phones like high end mobile devices.

Common localization for such network currently often

depends on the training-based approach and performs well.

Training often involves human intervention therefore must be

avoided. Even with the automated training mechanisms it may

take a reasonably long time to train the system to an acceptable

level.

IV. SIMULATION RESULTS

We simulate our localization algorithms in Matlab. We

compare our DSPSA and DSPSA-NC with centroid (C) and

weighted centroid (WC) localization techniques. Note that in

C, the unknown location of the node is calculated by the

centroid of all the neighboring nodes. In WC a weight is

incorporated and a weighted centroid measure is taken. Note

that the weight is inversely proportional to the squired distance

of the particular neighbor.

We set 100m × 100m filed with 100 nodes. Among them

n number of fixed anchor nodes in grids and the rest of the

nodes are mobile. Here, n = 9, 16, or 25. We analyze our

DSPSA and DSPSA-NC through random waypoint mobility

model [27]. Note that the random waypoint mobility model

attempts to model the mobile user. It defines the location,

velocity and acceleration of mobile devices that change over

time randomly and independently of other nodes. Walk time

and pause time are set as 2−6 sec and 0−1 sec respectively.

The speed is varied from vmin − vmax.

The error is defined as Eq. (5) where N and A are denoted

as total number of nodes and number of anchors respectively.

And where (xi, yi) and (x̂i, ŷi) are denoted as the true and

estimated locations of node i respectively.

error =
1

N −A
·

N∑

i=A+1

(xi − x̂i)
2 + (yi − ŷi)

2

ℜ2
(5)

Fig. 2 presents the instantaneous error of the location

estimation of the interested techniques for 100 seconds with

different anchor deployments. Here, vmin = 3 and vmax = 10.

In the beginning of the algorithmic runs instantaneous error is

quite high and decreases sharply. In this region the algorithms

converges, where DSPSA and DSPSA-NC converges in less

time i.e., with less number of runs. In the successive figures the

error measurement is taken discarding the first exponentially

decaying region i.e., error in the initial phase is neglected. And

for all the cases RMS errors are taken from the instantaneous

measurements. Such five runs are then averaged by using the

RMS again.

Fig. 3 depicts the error performance of the algorithms with

different speed of the nodes. We set vmax = 10 where

the vmin is varied from 1 to 10. Naturally with increasing

velocity the error increases for all the cases. Weighted centroid

(WC) was introduced to improve the error performance of
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Fig. 2. Instantaneous localization errors.

the localization of the centroid (C) algorithm. Our interesting

observation is WC performs better than C only in low velocity

scenario. On the other hand simpler C outperforms WC in high

velocity scenario. Our DSPSA and DSPSA-NC perform way

better than both C and WC approach in both low and high

velocity scenarios.

Fig. 4 provides the performance of the algorithm with

different noise factors (20, 40, 60, 80, and 100). To overcome

the impact of the velocity and variance of the velocity we set

the vmin = vmax = 3. In this case C performs the worst

followed by WC. Increasing NF has worst impact on WC

where C is quite stable to different NF. DSPSA-NC performs

the best with exception in 25 anchor case where DSPSA rather

performs better. The impact of NF compared to the velocity

on the algorithms is quite low when observing the slopes of

Fig. 3 vs. Fig. 4.

V. CONCLUSIONS AND FUTURE WORK

The simultaneous perturbation stochastic approximation

technique is utilized to minimize the location error in the

wireless networks in SPSA localization. Radio range-based

constraint is devised in the localization technique by penalty

function method subsequently addresses the flip ambiguity

problem. Controlling the error propagating from neighbors

is addressed by utilizing a neighbor confidence matrix in

SPSA-NC. The aforementioned SPSA and SPSA-NC is mostly

suitable for the static environment as they are centralized

localization technique. Retaining the strengths of the protocols

and taking them to the mobile environment is achieved by

reshaping the protocols into distributed localization techniques

as DSPSA and DSPSA-NC. The error performance of the

protocols is compared with C and WC methods of localization
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Fig. 3. Localization error (RMS) vs. speed.

in random waypoint mobility model with different settings of

velocities and noise factors. In all the cases our distributed

methods of localization algorithms outperforms the C and WC

methods thereby justifies our development effort.

A number of sensors are generally built-in into the mo-

bile devices these days. Exploiting the capabilities of the

other measurement like sound, light intensity and movements

(through accelerometers and gyroscopes) along with the radio

ranges can improve the localization accuracy further and is

our future direction of research.
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