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Abstract—Localization of sensor networks poses an immense
challenge and is considered as a hot research topic in recent
days. To address the accuracy on localization this paper proposes
constrained simultaneous perturbation stochastic approximation
(SPSA) based localization techniques for wireless sensor net-
works. A simple centralized localization algorithm using SPSA
technique that estimates the location of the non-anchor nodes
based on minimizing the summation of the estimated error
of all neighbors is the basic building block of the proposed
localization technique. This category of localization technique
incurs errors often referred as flip ambiguity. The improvement
of the simple SPSA based localization is made by modifying the
algorithm to a constrained optimization technique using penalty
function method where the correction on the flipped node is
made by penalizing the identified flips by the penalty function.
Simulation results demonstrate the superiority of the proposed
SPSA algorithm compared to its closest counterpart, namely, the
simulated annealing (SA) based localization algorithm.

Index Terms—wireless sensor network, localization, con-
strained optimization, simultaneous perturbation stochastic ap-
proximation

I. INTRODUCTION

Diverse applications can be developed and deployed by
using wireless sensor networks (WSNs) to satisfy the needs
of different kinds of users. Regardless of the use and type of
sensor applications, the sensed or measured value is beneficial
only if the location of sensor is available. Thus, localization
is an active area of research in the context of WSN.

A. Background and motivation

Localization in WSN poses a challenge primarily due to the
device cost, resource constraints and poor accuracy.

Straight forward solution to localization through GPS is not
very suitable because of the device cost and size. GPS is power
hungry and it necessitates line of sight from the GPS satellites.
Consequently GPS free solution to the localization becomes
a necessity for WSN localization. As a result a number of
such techniques are developed and presented in the context
of WSN. In fact the localization algorithms use a subset of

sensors known as anchors where the location information
is known. With the help of the anchors and based on the
distance and/or angle measurements the algorithms derive the
location information of non-anchor sensor nodes. Localization
problem remains an open issue and a hot research topic due
to the challenges posed by large error and high cost of the
localization techniques.

Localization techniques largely follow stages of measuring
distances or angles of neighboring nodes and combining
them to derive the relative or exact location of the nodes
in the networks. Three fundamental methods of taking the
aforementioned measurements are receiving signal strength
indicator (RSSI) [26] based, time of arrival (ToA) [14][8]/
time difference of arrival (TDoA) [25][10] based and angle of
arrival (AoA) [23] based techniques.

RSSI uses signal propagation loss as its underlying idea.
First the transmitter transmits with predefined signal strength
or embeds the signal strength with the hello message. Upon
receiving, receiver measures the signal strength and finds the
propagation loss by using theoretical or empirical models. This
propagation loss can be translated into a distance estimate. In a
ToA/TDoA approach the propagation time of the signal (from
transmitter to receiver) can be translated directly into distance
using signal propagation speed. Where an AoA technique can
measure the angle at which the signals are arrived. These mea-
surements are then used to find the location by using simple
triangulation techniques. Various estimation techniques can be
used to improve the error incurred by the measurements.

Unfortunately each of the aforementioned techniques has
its own limitations. RSSI is a cheap solution with respect
to the hardware cost. But due to the unreliability and ran-
domness of the wireless propagation RSSI suffers from its
poor accuracy, especially due to the multipath propagation.
TDoA provides good result only if there exists a line of sight
condition where this condition is not practically achievable in
many deployments. AoA can provide a reasonably accurate
measurement with a high hardware cost. In fact an array of



receiver is required to measure the angle information where
the delay of arrival at each element is measured and converted
to AoA. A higher accuracy of angle measurement requires a
higher number of receivers in the receiver array results higher
hardware cost.

B. Our contributions

To address the localization problem in sensor networks this
paper proposes a constrained SPSA based algorithm in WSN.
The contributions of the paper are twofold:

1) Utilizing the simultaneous perturbation stochastic ap-
proximation (SPSA) algorithm [29] as a tool to ap-
proximate the locations by minimizing localization error
based on a specific cost function.

2) Handling flip ambiguity by incorporating a constrained
problem where the constrain is addressed by a penalty
function method (logarithmic).

The rest of the paper organized as follows. Section II presents
a background of such localization algorithms in the literature,
section III presents and defines the cost function along with the
SPSA localization algorithm. Section IV presents simulation
results in various perspectives. Finally section V concludes
the paper along with some future directions of this particular
approach.

II. RELATED WORKS

A number of localization algorithms are presented in the
literature [4][21]. Some of them are simple, lightweight but
suffers from high error in deriving the locations. Among
these coarse-grained techniques, reference [7] proposes the
estimated location of sensor node be the centroid of the
location of the neighboring anchors. The error performance
of the localization technique is improved by incorporating a
weight attached to each neighbors and the resultant location
is simply the weighted average of the neighbors [6][31]. A
further improvement of the localization algorithm is made by
adaptively determining the relative weights to the neighbor
nodes [5].

Another lightweight localization algorithm is DV-hop [20].
The DV-hop first finds the hop distances of the nodes from the
anchors by incorporating distance vector routing technique.
The hop count is then translated to the actual distance by
determining the average hop distance in meters based on
the actual distance of the anchors and their hop distance
counts. RSSI DV-hop (RDV) improves the simple DV-hop
performance by replacing the hop count to the RSSI based
distance measurements [30].

In reference [2] authors take average of RSSI values with
different transmit power levels to construct a table. The table
is processed centrally to compensate the non-linearity and
thereby estimate the distances between nodes. Using sequential
quadratic programming method the final results are achieved
by minimizing the cost function.

A multidimensional scaling (MDS) based centralized lo-
calization is proposed in [28]. Algorithm first determines the
shortest paths of all node pairs which can easily be determined

by the Dijkstra’s [11] or Floyd’s [13] algorithm. The distances
then assigned as the elements of distance matrix of MDS. A
relative map of the nodes is obtained by the classical MDS
from the MDS matrix. Based on the positions of the anchor
nodes an absolute map is derived from the relative map.

By collaborative multilateration nodes several hops away
from the beacon enable anchors can derive their locations [27].
Nodes find the bounding box or the region where it lies
based on the beacon coordinates. Nodes use Kalman filtering
approach to update the positions. Where nodes not directly
connected to the beacons starts with the neighbors as a
reference point. After calculating nodes broadcast the location
estimates. And upon receiving the estimates neighbors updates
their own estimates. By using this iterative approach location
information becomes refined throughout the network. The
drawback of the system is, it requires updating of location
through transmissions. Though distributed, the transmission in
each round is energy hungry.

Algorithm in reference [24] assumes nodes as point masses
and are connected through springs. Algorithm uses force
directed relaxation method to converge to a minimum energy
configuration. This heuristic graph embedding method uses a
polar coordinate approach to the localization algorithm. The
drawback is, the algorithm is vulnerable to stuck into local
minima.

In [3] nodes in the network that have the global location
information (known as seed) initiate the outward broadcasting
of hello messages that contain the seed location information
and hop count from the seed. Intermediate node suppresses the
duplicate messages and finds the minimum hop counts from
the seeds. Upon finding such three different hop counts and
seed location information nodes calculate their positions by
finding the minimum of total squared error between calculated
and estimated distances. The algorithm requires high node
density to keep the localization error reasonable. Moreover
using hop count can incur error if the hello message goes
through a detour due to obstacles.

Algorithm [22] uses maximum likelihood (ML) estimation
for location estimation of sensor node by minimizing the dif-
ference between measured and estimated distances. Minimum
mean square error (MMSE) [17] algorithm is used to solve
the aforementioned estimation problem. The drawback of the
technique is it requires a high density of node, alternately a
high transmit range to make the estimation from a reasonably
large neighborhood cluster. With a small number of neighbor
nodes this algorithm suffers from a poor performance [9][19].

In a similar approach simulated annealing (SA) based local-
ization [16] solves the minimization problem with simulated
annealing technique. Algorithm is evaluated with at least three
anchors in the neighborhood for all non-anchor nodes deemed
an impractical deployment for the randomly deployed sensor
networks. Moreover the algorithm suffers from phenomena
called flip ambiguity [18][12][15] addressed later in the paper.



III. CONSTRAINED SPSA LOCALIZATION

The proposed localization algorithm randomly initializes
the locations of the non-anchor nodes in the networks. It
then estimates the location information based on the measured
distances of the neighbor nodes. The estimation is based on
the technique known as SPSA that minimizes the sum of
error between the measured and estimated distances of the
neighbor nodes. In fact the aforementioned cost is modified to
incorporate penalty for the flipped nodes by using a penalty
function method.

A. Collecting measurements

Algorithm starts with measuring distances between all
neighbor nodes. The simplest and cheapest way of taking such
measurement by transmit-receive signal strengths can be cho-
sen. Where the distance can be measured as dij = β

√
pi/pj .

Here pi and pj are transmit and receive signal strength
respectively and β is the path loss exponent and can be
measured at unit distance. Unfortunately these straight forward
measurements incorporate errors due to the nature of wireless
medium and can be modeled by log-normal shadowing [1].
According to the model, the receive signal varies as [µ, σ2]
where µ and σ are mean and variance and often taken as 0.0
and 1.0 respectively. The derived measurements along with
the node IDs are then sent to the central location for further
processing where location estimations are derived through
multiple refinements. An alternative distance measurement by
using ToA/TDoA can also be chosen.

B. The basic cost function

One most important challenge of WSN localization comes
from the fact that cheap measurements are error prone and the
error propagates. Localization techniques attempt to approxi-
mate the location of the nodes in the network by minimizing
the cost of the estimated error as [22][16]. The cost function
can be expressed as follows.

τ =
∑
jεni

|d̂ij − dij | (1)

Here dij and d̂ij denote the measured and estimated dis-
tances between nodes i and j respectively. ni denotes set
of neighbors of node i. Based on the prior observations and
reports on the weakness of the aforementioned cost function
we modify it to a constrained optimization problem through
the penalty function method.

C. Penalty incorporated cost

Minimizing sum of the distance errors by equation (1)
does not perform well when a subset of anchors form a
straight line. Non-anchor nodes flip to the opposite side of
the straight line and cause high localization error. These flips
are common for all the localization algorithms approximating
the location based on the function (1) and commonly known
as flip ambiguity. In some cases not only one node flips but
the whole neighborhood suffers from this phenomenon.

It is imperative in designing a localization algorithm such
that the algorithm handles the flip ambiguity. A simple ob-
servation is, if the location of the node is flipped then it is
likely the minimum hop count of the node from some other
nodes will be altered. A constrained optimization algorithm by
equating the hop counts can handle the issue to a large extent
for a reasonably dense network.

For this specific case the optimization becomes minimizing
equation (1) subject to hmi = hei. Here, hmi and hei are the
measured and estimated hop distances of node i respectively.

Minimum hop counts can simply be implemented by
Bellman-Ford’s or Dijkstra’s algorithm. Whenever there is
a mismatch of hop count, the optimization algorithm can
penalize the cost by monotonically increasing the penalty in
successive rounds. But measuring this minimum hop distance
must be implemented in every round of the optimization tech-
nique. Therefore the constrained hop count based optimization
will become undesirable due to its processing cost.

The same result can be achieved by evaluating the neighbors
for each node. If a specific node’s estimated location reviles
a missing neighbor from the measured neighbor list then
a penalty is added as a cost. Similarly if there exists an
additional node in the evaluated neighbor list that does not
exist in the measured neighbor list a penalty is added. In this
case the optimization problem becomes minimizing

τ =
∑
jεni

|d̂ij − dij | (2)

s.t. d(Ni) < <; d(N̄i) > <

Here, Ni denotes the set of neighbor nodes and N̄i denotes
the set of non-neighbor nodes of node i in the network. And
finally the transmit range of the nodes are denoted as <.

By using the penalty method we in turn change the cost
function of a constrained optimization problem where with
the new cost function the optimization problem becomes
a general form of optimization (without any constraints).
Different types of techniques such as augmented Lagrange
method, penalty function method, quadratic programming etc.
can be used to solve the inequality constrained optimization
problem. We attempt to solve the problem by using penalty
function method. Two different kinds of penalty methods
are sequential and exact penalty transformation. Among the
sequential methods there are exterior-point penalty method and
barrier function method. Typically the barrier functions are
inverse or logarithmic. We implement the logarithmic version
of the barrier function method for our algorithm. We chose the
barrier method because it preserve the feasibility at all times.
Therefore the modified cost to be optimized can be expressed
as τ =

∑
jεni
|d̂ij − dij | + rk ∗ (−

∑
jεni

ln(−|d̂ij − <|) +

rk ∗ (−
∑
jεn̄i

ln(−|d̂ij − <|). Here, rk is the monotonically
increasing penalty function based on rounds. Having no con-
straint the simple SPSA can handle the problem straightfor-
ward.



D. Localization algorithm

SPSA localization algorithm starts with randomly initializ-
ing locations in the x-y coordinates of all nodes in the network.
It then randomly selects a single node of interest at that
particular run and calls SPSA engine for approximating the
node location based on the neighbor distances. Upon updating
the location information receiving from SPSA algorithm, the
localization algorithm in turn selects a second node. The
procedure continues until the correction becomes less than a
predefined threshold.

E. SPSA

Stochastic optimization is an appropriate solution when a
closed form solution is hardly obtainable. SPSA is a stochastic
optimization tool for the multivariate systems that converges
iteratively to the optimal state. As other approximation tech-
niques SPSA provides step by step technique from random
initial guess to achieve final optimal value by improving the
objective function in successive iterations. The input argu-
ments in our case the measured distances are noisy information
due to the random wireless propagation model.

F. Selecting SPSA as a tool

Many optimization algorithms have assumption of determin-
istic settings requires information about the gradient vector
associated to the cost function. Primarily wireless channel is
random as a result the distances have similar randomness in the
measurement error. Consequently the constituted cost function
has largely irregular characteristic depicted in Fig. 1. Note that
only two nodes with different distances have been taken to plot
the figure because presenting more nodes is difficult because of
increasing dimensions incorporated. Generally three or more
nodes are required in the neighborhood to get a reasonable
result for the location algorithms. Incorporating more nodes
clearly will increase the complexity of the gradient. Therefore
it is hard to obtain such gradient vector in our perspective
though it could be an interesting future direction of our
research. Such a problem can be handled by using large Monte
Carlo simulations or by using recurrent neural networks. Gra-
dient free approximation technique such as SPSA can provide
similar convergence properties as gradient based approach
therefore rather than digging deeper into the cost model for
the functional relationship is avoided without sacrificing the
error efficiency of the localization technique.

G. SPSA algorithm

Here, the primary problem is to minimize the differentiable
cost function defined in equation (1). Let denote the cost
function as ℵ(θ) where θ is a two dimensional vector contains
x and y coordinates of the nodes to be estimated by the
localization technique. It is trivial to find the cost for any given
x and y. SPSA uses general recursive procedure to estimate θ
by using the following equation.

θ̂k+1 = θ̂k − akĝk(θ̂k) (3)
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Fig. 1. Cost vs. neighbor distances

Where ĝk(θ̂k is the gradient estimation defined as dℵ/dθ at
kth iteration. To evaluate the aforementioned gradient the loss
function evaluation is performed as ℵ(θ ± perturbation) as
per the algorithm’s name simultaneous perturbation designates.
The elements of θ i.e., x and y randomly perturbed both
in +ve and −ve directions to obtain two corresponding
measurements. Therefore the gradient becomes

ĝki(θ̂k) =
ℵ(θ̂k + ck∆k)− ℵ(θ̂k − ck∆k)

2ck∆ki
(4)

where ck denotes a small positive number and it decreases with
successive iterations. ∆k is known as random perturbation
vector and can be expressed as equation as follows.

∆k = [∆−1
k1 ∆−1

k2 . . .∆
−1
kn ]′ (5)

This is an independent symmetrical vector distributed
around 0 with finite inverse moment. Please note that a



SPSA localization technique
θ:(x, y)

Node level measurements for all node i
Use RSSI to measure neighbor distances
Update location server with neighbor distances

Algorithm level at central location
while (Improvement > Threshold)
{

Select a node randomly
Estimate the location of the selected node by z and ℵ
θ =z(θ)
{

Tuning parameters: n, p, a, c, α, β, γ
for k = 1 : n
{
ak = a/(k + β)α

ck = c/kγ

δ = 2 ∗ round(rand(p, 1))− 1
θ+ = θ + ck ∗ δ
θ− = θ − ck ∗ δ
τ+ = ℵ(θ+)
τ− = ℵ(θ−)
ĝ = (τ+ − τ−)./(2 ∗ ck ∗ δ)
θ = θ − ak ∗ ĝ

}
θ = min(θ, θmax)
θ = max(θ, θmin)

}
τ =ℵ(θ)
{

rk = 1/(σ(ς−1))

ℵ =
∑
jεni
|d̂ij − dij | +

rk ∗ (−
∑
jεni

ln(−|d̂ij −<|)+
rk ∗ (−

∑
jεn̄i

ln(−|d̂ij −<|)
}

}

Fig. 2. Cross-entropy based localization algorithm

uniform or normal distribution does not satisfy the condition
of choosing ∆k. Rather a symmetric Bernoulli ±1 distribution
is a suitable candidate of ∆k. Therefore ∆ki is the ith
component of ∆k vector and is a ± random variable.

Fig. 2 presents the proposed localization algorithm. The
two core functions z and ℵ in the figure represent the op-
timization technique and the cost function respectively. Here,
n, p, a, c, α, β and γ are the tunable parameters. Where p is
2 in our case as the dimension of our estimation problem is
2. ς and σ are the current round and penalty factor of the
algorithm. As we normalize the distance measures, θmax and
θmin becomes 1 and 0 respectively. Other implementation that
does not do any normalization can simply use their maximum
and minimum values.

Therefore with the help of the penalty based cost function
the proposed SPSA technique finds the estimated location of

randomly chosen node. By iterative refinements all the location
information of the non-anchor nodes is derived. Where the
algorithmic inputs are the measured neighbor distances and
initialized locations are mere random guesses.

IV. SIMULATION RESULTS

We simulate our SPSA localization algorithm in Matlab and
compare the results with those of SA. 100 nodes have been
deployed in a 100m × 100m field. We compare the results
for both random and fixed anchor deployments. And find the
superiority of our proposal compared to SA. For fixed anchors
we have 9, 16 and 25 anchors equally distributed grid in the
field where non-anchor nodes are always in random locations.

We model error in measurement by the following equation
where dtij and dmij are the true and measured distances respec-
tively. And n is the Gaussian disturbed random variables with
mean 0.0 and variance 1.0. nf is the noise factor that regulates
the magnitude of error. Note that the nf of the model is taken
as 0.1 for all the experiments except for Fig. 9 and Fig. 10
where the nf varies from 0.2 to 1.0 with an increment of 0.1.

dmij = dtij ∗ (1 + n ∗ nf) (6)

On the other hand, derived localization error is calculated as
error = (1/(N−A))∗(

∑N
i=A+1((xi−x̂i)2+(yi−ŷi)2)/R2).

Where, (xi, yi) and (x̂i, ŷi) are the absolute and estimated
locations of the node i. N and A are total number of nodes
and total number of anchors in the network [16].

Fig. 3 shows convergence of the algorithm by depicting
the error in rounds. Error exponentially decreases to a certain
limit after such limit the decrease of error becomes almost
negligible where running more for a better performance is
not a cost effective solution. At this point we stop running
optimization algorithms and capture the results. Fig. 4 shows
the sensor field with 10 anchors where the locations are derived
using SPSA and SA respectively. The distance measures are
normalized where the radio range is set to 0.2.

Note that the algorithms were run ten times and root mean
square error is taken as final result in the figures. Fig. 5 and
Fig. 6 present error performance on the localization algorithms
with grid anchor placements. The performance is measured for
the transmission ranges 0.13−0.19 for the cases 9, 16 and 25
anchors. For all the cases SPSA performs better than the other
algorithm.

Fig. 7 depicts error performance of the localizations with
three different transmit rages (0.18−0.2) for different number
of random anchors (5 − 50) in the field. For all the cases
SPSA outperforms SA. Fig. 8 shows the error performance of
the algorithms with different transmit ranges with 15 anchor
nodes. For all the transmit ranges SPSA shows the superiority
on the results.

Fig. 9a shows the localization error for the grid anchor
deployments with respect to nf from 0.2− 1 where the radio
range is set to 0.2. Fig. 9b shows the same result in 3-d space.
SPSA only has high error with nine anchor deployments.
While comparing to its counterpart it still exhibits error less
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than half of SA error. For a larger set of anchors (16/25) the
error becomes negligible (≤ 1%) even with a very high noise
factor. In this region SA is incomparably high.

Fig. 10a-b depicts the localization error with respect to the
measurement error with randomly deployed anchor nodes in
the field for various numbers of anchors. Where Fig. 10c shows
the same result in 3-d space. Roughly similar performance
exhibits in the random anchor deployment compare to the grid
deployments as expected. Observing the slope of the curves
we actually find the impact of nf on the error performance.
Slopes in SPSA are much smaller than the slopes SA for the
corresponding anchors. This trend reviles the fact SPSA is lot
tolerant to nf compare to SA.

V. CONCLUSIONS AND FUTURE WORKS

To address the challenges in WSNs a novel localization
algorithm based on constrained optimization is presented in
this literature. The constrained optimization is achieved by
modifying the cost function utilizing the barrier function
based penalty function method. Finally the cost is optimized
by SPSA algorithm. Simulation results show that a higher
performance can be achieved by the proposed technique.
The location information from the neighborhood may con-
tain errors if the particular neighbor is a non-anchor node.
Moreover the distance measurements are erroneous. Location
coordinates derived based on the aforementioned errors ad-
versely impact on the estimation. The errors are related to
the node types (anchor/non-anchor), hop distances from the
anchors, distances in meters etc. Therefore a trust model can be
developed based on the underlying error posed by a neighbor
node and the SPSA localization technique can be benefited
by incorporating the model. Development of such model for
SPSA localization is one of the aspects of our future directions.
We also intend to observe the performance of the other penalty
methods for our solution.
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(a) Simulated annealing (SA)
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(b) Simultaneous perturbation stochastic approximation (SPSA)

Fig. 4. Original and estimated node locations in the network with 100 nodes
among which 10 are anchors
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Fig. 5. RMS error vs anchors (grid deployment)
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Fig. 6. RMS error vs transmit range (grid deployment)

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of anchors

E
rr

or

 

 
Simultaneous perturbation stochastic approximation (SPSA)
Simulated annealing (SA)

(a) Tx range = 0.18
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(b) Tx range = 0.19
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(c) Tx range = 0.2

Fig. 7. RMS error vs anchors (random deployment)
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Fig. 8. RMS error vs transmit range (random deployment)
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Fig. 9. Localization error vs measurement error (grid deployment)
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Fig. 10. Localization error vs measurement error (random deployment)


