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We propose a detailed protein structure alignment method named “MatAlign”. It is a
two-step algorithm. Firstly, we represent 3D protein structures as 2D distance matrices,
and align these matrices by means of dynamic programming in order to find the ini-
tially aligned residue pairs. Secondly, we refine the initial alignment iteratively into the
optimal one according to an objective scoring function. We compare our method against
DALI and CE, which are among the most accurate and the most widely used of the
existing structural comparison tools. On the benchmark set of 68 protein structure pairs
by Fischer et al., MatAlign provides better alignment results, according to four differ-
ent criteria, than both DALI and CE in a majority of cases. MatAlign also performs
as well in structural database search as DALI does, and much better than CE does.
MatAlign is about two to three times faster than DALI, and has about the same speed
as CE. The software and the supplementary information for this paper are available at
http://xenal.ddns.comp.nus.edu.sg/~genesis/MatAlign/.

Keywords: Protein structure; structural alignment; alignment quality criteria; structural
classification.

1. Introduction

Comparison and/or alignment of three-dimensional (3D) protein structures plays

a central role in structural bioinformatics. It is widely accepted that the function
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of a protein is more closely related to its 3D structure rather than its amino acid
(AA) residue sequence. Structurally similar proteins perform similar functions. The
comparative study of protein structures can give us knowledge of their functional
relationships, and such knowledge can be applied in many applications such as drug
design.

The problem of protein structure comparison has been studied since 1970s.!
Nowadays, there are several structural comparison methods available: namely
DALI? CE,?> SSAP,* Geometric Hashing,” VAST,® STRUCTAL,” StrAlign® and
many more. Reviews on these methods can be found in survey papers and books
by Koehl,? Novotny et al.'® and Orengo et al.!

In this paper, we propose a new protein structure comparison method based on
the alignment of distance matrices. It can provide precise results, and can be used
for the detailed comparative structural analysis of proteins.

2. Preliminaries

In this section, we will discuss general information on protein structure comparison,
distance matrix representation and alignment.

2.1. Structural comparison framework

When comparing two proteins, people usually try to find the corresponding pairs
(i.e. alignment) of AA residues that provides the optimum similarity score with
respect to the scoring scheme used. Thus, the terms “structural comparison” and
“structural alignment” are often used interchangeably. (Still, there exist some non-
alignment-based structural comparison methods.!+11)

There are several ways to measure the similarity between two protein structures.
Among them, root mean square deviation (RMSD) is the most commonly used.’
Under this scheme, the aligned residues in one structure are superimposed onto
those of another structure so as to yield the minimum RMSD value. The superim-
position process involves translation and rotation of one structure with respect to
the other. Mathematically, given two set of aligned residues A, and B, from two
proteins A and B respectively, we have to minimize the RMSD value A(A.1, Ba)
between them:

N
A(Aal, Bal) = % Z (Aarli] = (R - Bal[i] + T))? (1)

where N is the number of aligned residues (i.e. |Aa| = |Ba| = N), and R and T
are the rotation matrix and translation vector applied on B, in order to yield the
minimum RMSD value.

In most cases, RMSD alone cannot be used to determine the quality of an
alignment. A smaller RMSD value does not always imply a better alignment quality.
The length of alignment (i.e. the number aligned residue pairs) is also needed to
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be considered. Suppose we have two structural comparison methods for aligning
two protein structures with 100 residues each. If the first method can produce 30
aligned residue pairs with RMSD value 2.0 A, and the second method can generate
60 pairs with RMSD 2.1 A, the latter can be considered more significant.

Different groups of researchers have proposed different scoring schemes or func-
tions to balance the RMSD value (A) and the number of aligned residue pairs (V).
Each scheme calculates a “single-value” score by manipulating A and N in some
manner so as to measure the quality of an alignment in its own way. There is no
universal consensus on measuring the alignment quality by a single value.”

Here, we will look at the following four scoring schemes. The first one is used as
the native scoring function for our proposed MatAlign method. The other three have
been recently used as the quality criteria for comparative performance evaluation
of different alignment methods.'?

(1) Alexandrov and Fischer’s alignment score'® (denoted as S here). An alignment
with the larger S value is considered to be a better one (i.e. S is to be maxi-

mized).

_3><N
14+ A

(2)
(2) Kleywegt and Jones’ similarity indexr (SI)** (to be minimized).

A xmin(|A4],|B])
SI = S (3)

where |A| and |B] are the lengths or the number of residues in the original
proteins A and B, respectively.
(3) Kleywegt and Jones’ match index (MI)** (to be maximized).
1+ N

MI = (1+ AJwo) x (1 + min(|A[,|B])) (4)

where we use wy = 1.5 as a default value.!?
(4) Subbiah et al’s structural alignment score (SAS)'S (to be minimized).

A x 100
SAS = N (5)

2.2. Distance matrixz representation

PDB (Protein Database Bank) (http://www.rcsb.org/pdb) provides the 3D (x,y, 2)
coordinates of constituent atoms of AA residues in each protein structure. When
comparing the protein structures, people usually do not take all the atoms in the
structure, but only the C, (central carbon) atoms of AA residues into account.?
A 3D protein structure can be represented as a 2D distance matrix. The distance
matrix DMy of protein A with |A| residues is an |A] x |A| matrix storing the
pairwise inter-atomic distances among the C, atoms in the protein. The distance
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between two C, atoms 4 and j (1 <4,j < |A]) is denoted as d;;. Obviously, d;; =0
ifi=j.

Representing a protein structure as a distance matrix is useful because it is rota-
tion and translation invariant, yet it still can capture all the structural information
about a protein as much as the original 3D representation can.

In the distance matrix of protein A, the ith row (denoted as DM 4[i]) can be
regarded as the distance profile of residue i, because it stores the C,—C, distances
of residue ¢ with respect to the other residues in A. For example, the first row of
the distance matrix is the distance profile of residue #1.

2.3. Aligning distance matrices for structural alignment

In order to structurally align two proteins, we can align their distance matrices
instead of their original 3D structures.? Alignment of distance matrices is based on
the fact that two structurally matched residues, one from each protein, have the
similar distance profiles (represented as rows in their respective distance matrices).

For example, suppose we have two protein structures P and ) which are iden-
tical except for the inserted residue 3 in P, as shown in Fig. 1. For simplicity, let
us denote the distances between residues as symbols: A for df, (C,~C, distance
between residue 1 and 2 in P), B for df}, C for df}, etc. Since the two proteins are
identical except for one residue, their corresponding C,—C,, distances are the same;
ie. dby =d2% = A; db), = d2. = C, etc.

When we observe the distance matrices DM p and DM of proteins P and Q)
respectively, we can see that row DM p[1] (i.e. the distance profile of residue 1 in
protein P) is more similar to row DMg|a] (the distance profile of residue a) than
any other rows in DM. The row—row matching score of DM p[1] and DMg[a]
is 4. The pairs (0-0), (A-A), (C-C) and (D-D) are the matching ones. The row-row
matching score of DM p[1] and any other row in DMy, is at most 1. For example,
if we take DMglb], there can be only one match: either (0-0) or (4-A). (Both

1 2 3 4 5 a b c d
1 0 A B|C|D alolalec|D
2/A|0|E|F|G blA|O|F|G
3/ B|/E|O|H|I clelrlo] g
B 4 C|F/H|O0|J N d/D|G|J|O
G X, s5D[6[1][T/0 “p.. GY
) @ Distance matrix of P \ Distance matrix of Q
Protein P Protein Q
a b c d
14111 P 12|45
2|1|4 |11 Qlalble|d
TOwW-row 31111
matching scores 4 (71 4] 1 Alignment of P and Q
5/1/1|1|4

Fig. 1. Alignment of distance matrices.
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matches cannot be achieved at the same time, because of their different sequence
orders: 0, A and A,0.) Similarly, we can observe that DM p[2] is most similar to
DMq[b]; DMp[4] to DMg|c]; and DM p[5] to DMg[d] as shown in Fig. 1. Thus,
we finally have the alignment of residue pairs: (1 — a), (2 - b), (4 — ¢) and (5 - d).

3. The MatAlign Method

We propose a protein structure comparison method in the conventional framework
of structural alignment, RMSD, and alignment score, using the principles of distance
matrix representation and alignment as described above. We name our method
MatAlign which stands for Matrix Alignment. From the experimental results, it
is observed that MatAlign can offer the precise alignment results. It is ideal for the
detailed comparative analysis of protein structures.

The idea of aligning distance matrices to yield the alignment of protein struc-
tures has been previously used in the DALI? method. However, MatAlign adopts
a different approach. DALI sub-divides a distance matrix into 6 x 6 overlapping
sub-matrices, finds the matching sub-matrix pairs from two proteins, and assemble
these matching pairs into the final alignment by means of Monte Carlo optimiza-
tion. On the other hand, MatAlign uses dynamic programming at two levels: first
for row—row alignment and second for consolidating row—row scores into the initial
alignment; and then iteratively refining the initial alignment into the final one based
on the objective alignment score function.

Again, although MatAlign utilizes the two-level dynamic programming strategy,
it is substantially different from the double dynamic programming of SSAP.* The
two methods are diverse in their data representation, superimposition and score
accumulation strategies. (See the supplementary webpage for details.)

In addition, unlike DALI and many other methods such as VAST,® MatAlign
does not use any secondary structure information at all. Thus, the alignment results
produced by MatAlign will not be affected by the choice of the secondary structure
annotation method.

MatAlign can be easily parallelized. Most of the running time of MatAlign is
incurred in the step of all-against-all alignments of rows from two matrices. Since we
have to perform multiple mutually-independent dynamic programming procedures
in this step, we can simply reduce the running time by parallelizing them.

The basic MatAlign algorithm works in two steps. First, it finds the initial
alignment of residues. Second, it refines the initial alignment into the final one with
the optimum alignment score. We also implement some enhancements on the basic
algorithm.

3.1. Step 1: finding initial alignment

The algorithm for generating the initial alignment between two protein structures
A and B is described in Fig. 2.
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function GetInitAlignment (DM 4, DMp)
input: (1) DMa[l...|A],1...]|A|] (distance matrix of protein A)

(2) DMp[1...|B|,1...|B|] (distance matrix of protein B)
output: (1) N (number of aligned residue pairs)

(2) Agi[1... N] (residues from A that involve in alignment)

(3) Bgi[l...N] (residues from B that involve in alignment)
procedure:
1. fori=1to |A|
2. for j =1 to |B|
3. SM(i, j] = AlignRow (DM 4[i], DM p|j])

/* row-row matching score of it? row of DM, and j*" row of DMp */

4. GS =0 /* Gap score */
5. fori=0to|A] F[,00=i¢xGS /* F is dynamic programming’s matrix */
6. fori=0to|B| FI[0,i]]=1ixGS
7. fori=1to |A|
8. for j =1 to |B|
9. Fli, ] = max{ (Fli — 1,4] + GS), (Fli — 1,4 — 1] + SMi, ), (Fli — 1,4] + GS) }
10. GetAlignedPair (F, Ay, By, N)
11. return (Ag;, Bgi, N)

Fig. 2. Initial alignment generation algorithm.

As discussed in Sec. 2.3, we first have to compare all rows (representing dis-
tance profiles of residues) from DM 4 against all rows from DM g, and store the
row—row matching scores in the score matrix SM. Row—row comparison algorithm
AlignRow (line 3 in Fig. 2) is an adaptation of the classical Needleman—Wunsch
dynamic programming algorithm used for sequence alignment.'® We use the linear
gap penalty model with the default gap penalty value of 0. We use the function
Match(e, @) to determine the degree of match between two C,—C, distance values
dl and d2.

Match(dl,d2) =

{a/(|d1 —d2|+a) if|dl — d2| < Tuaten -

otherwise

where « is a score adjusting weight and Tyraten is a difference threshold of the
distances. We use the empirically chosen values o = 0.75 and Tyraten = 1.6 A
that result in best performance. The function Match(e,e) is used in the dynamic
programming’s selection step. After executing the dynamic programming, we get
the matching score of the two given rows.

Suppose we have two proteins structures A and B whose distance matrices
DMy and DMp are as shown in Fig. 3. As an example, the alignment of row
DM a[1] (the first row of A’s distance matrix) and row DM p[1] (the first row of
B’s distance matrix) is shown in Fig. 4. The alignment path is shown in gray. The
matching score of DM 4[1] and DM g]1] is stored in cell [1,1] of the score matrix
SM. In this manner, we align every row from DM 4 and every row from DMp
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1| 000|11.00| 100| 200 3.00| 4.00 16.00

2| 11.00 | 0.00 | 12.00 | 13.00 | 14.00 | 15.00 | 17.00

3| 100|1200 | 000 500 6.00| 7.00| 18.00

4| 200|1300 | 500( 0.00 800| 9.00]| 19.00

5| 300|1400 | 6.00( 800 0.0 10.00| 20.00

6| 400|1500 | 7.00( 9.00| 10.00| 0.00| 21.00

7| 16.00 | 17.00 | 18.00 | 19.00 | 20.00 | 21.00 | 0.00

Distance Matrix of Protein A

1 2 3 4 5 ]

1] 000 105 210 | 3.15| 1105 | 4.20

2| 105| 000 505 610| 1210 7.15

3 210 505| 0.00| 820| 1315 | 9.05

4| 315| 6.10( 820 0.00| 14.20 | 10.10

5(11.05 | 1210 | 13.15 | 1420 | 0.00 | 15.05

6| 420| 7.15( 9.05| 10.10 | 15.05 | 0.00

Distance Matrix of Protein B

Fig. 3. Two sample distance matrices of proteins A and B.

all-against-all, and fill their respective matching scores in the score matrix SM as
shown in Fig. 5 (left).

Then, we apply another Needleman—-Wunsch style dynamic programming algo-
rithm on SM to generate the initially aligned residue pairs. In fact, the score matrix
stores the degrees of matching of A’s residues to B’s residues, and dynamic pro-
gramming effectively solves the ordered bipartite matching problem of maximizing
the total degree of residue-residue matchings.

Figure 5 (right) shows the dynamic programming’s matrix on SM and the initial
alignment of A and B. In this alignment, we can observe that the residues whose
matching partners cannot be successfully found are aligned with the gaps. Such a
residue usually have a distance profile which is quite different from the others’ in its
counterpart protein. (The distance profiles of such residues are highlighted in gray
in Fig. 3.) Since we use the ordered bipartite matching strategy, even though the
distance profile of residue 2 in protein A is similar to that of residue 5 in protein
B, they are not aligned together. This is because aligning (2 — 5) will forbid the
alignments of other good pairs (3 — 2),(4 — 3) and (5 — 4), and hence will result
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Row #1 from B’s Distance Matiix (DA%[1])

1 2 3 4 5 6

0.00| 105 | 210 | 3.15 | 11.05 | 4.20
0.00| 0.00( 000| 0.00( 000 | 000| 0.00
—~
=
;-__fF 1| 000| 000 100 1.00( 1.00( 1.00| 1.00( 1.00
Z
;’fi 2100 000 1.00| 109 110 1.1 195 [ 1.95
=
=~
—
T) 3| 100)| 000 100 195 195 1.95| 195 219
2
=
Z 4| 200 000 100| 195| 286 | 286 | 286 | 286
a
KA
T, 5| 3.00)] 000| 1.00( 195 | 286 | 3.73 | 3.73 | 3.73
g
H 6| 400| 000 100 195 286 | 3.73| 3.86| 456
—
=
e
é 71600 000 100 1.95( 286 3.73| 390 456
(_'DS,MA[I] 0.00|11.00| 1.00| 2.00| 3.00| ——| 4.00 | 16.00
@j}fB[l] 0.00 105| 210 | 3.15|11.056 | 420 | ——

Fig. 4. Alignment of first row from distance matrix of A and that from B.

in a smaller total degree of residue-residue matchings. The actual aligned residue
pairs are traced back from the dynamic programming’s matrix F' by a recursive
algorithm GetAlignedPair (line 10 in Fig. 2) as described in the book by Setubal
and Meidanis. !

3.2. Step 2: refining alignment

We use the alignment score S defined in Eq. (2) as MatAlign’s native score. The
function S balances the RMSD value and the number of aligned residue pairs.*?
Our objective is to maximize S as much as possible.

The initial alignment generated in Step 1 is usually not an optimal one in terms
of S. Thus, we refine the alignment iteratively until S cannot be further improved.
The refinement algorithm is given in Fig. 6.

In order to calculate the alignment score S, we first have to superimpose the set
of aligned residues in one protein onto their counterparts in the other protein, and
calculate the value of A (RMSD) between them. We can solve the RMSD problem
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B B
1 2 3 a4 5 _§ 1 2 3 4 5 6
1| 456 214 | 170 | 1.55 | 1.97 | 1.35 0.00 | 0.00 | 0.00  0.00| 0.00| 0.00| 0.00
2| 1.61| 245 | 2.30 | 2.27 | 4.52 | 1.78 1| 0.00 | 4.56 | 4.56 | 4.56 | 4.56 | 4.56 | 4.56
3| 2.05| 4.68 | 2.20 | 1.92 | 2.25 | 1.68 2| 0.00 | 4.56 | 6.71 | 6.95| 6.95| 9.08| 9.08
A 4| 1.80| 2.23 | 4.65 | 2.56 | 2.27 | 2.25 3| 0.00 | 4.56 | 9.25| 9.25| 9.25| 9.25|10.76
5| 1.55| 1.89 | 2.55 | 4.52 | 2.1 | 2.48 A 4| 0.00| 456 9.25 | 13.39 | 13.39 | 13.89 | 13.80
6| 1.26 | 1.61 | 1.96 | 2.75 | 1.91 | 4.56 5| 0.00 | 4.56 | 9.25 | 13.80 | 18.42 | 18.42 | 18.42
7| 1.00| 1.06 | 114 | 1.25 | 1.68 | 1.54 6| 0.00 | 4.56| 9.25 | 13.80 | 18.42 | 20.33 | 22.08
Row-Row Alignment Score Matrix ( SM) 7| 0.00| 4.56 | 9.25 | 13.80 | 18.42 | 20.33 | 22.98
Dynamic Programming Matrix
A 1 2 3 4 5| — 6 7
B 1| — 2 3 4 5 6| —
Resulted Aligned Pairs

Fig. 5. Generating initial alignment of proteins A and B.

by using the singular value decomposition method. The function CalculateRMSD
(line 3 in Fig. 6) is based on the one given in the work by Wu.'7

During the process of calculating RMSD, we can easily pick up the pair of
residues that are farthest. We remove this pair from our alignment, and iterate the
processes of superimposition and calculating RMSD as long as the alignment score
S converges (i.e. keeps increasing). We stop the iteration when S cannot be further
improved (line 5 in Fig. 6).

The distribution of the RMSD values and the alignment lengths of 68 test protein
pairs before and after the refinement step are depicted in Figs. 7 and 8, respectively.
It can be observed that there are many alignments that are not well-fitted (i.e. large
RMSD values) before the refinement. The number of such bad alignments is much
reduced after the refinement.

3.3. Enhancements on basic algorithm

The following enhancements are done on top of the basic MatAlign algorithm in
order to achieve better speed and greater accuracy.
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function RefineAlignment (N, Aipnit, Binit, N, Afinats Brinal, D)
input: (1) N (number of initially aligned residue pairs)
(2) Ainit[l...N] (3D coordinates of residues from A that involve in initial alignment)
(3) Binit[l.. N] (3D coordinates of residues from B that involve in initial alignment)
output: (1) N’ (number of finally aligned residue pairs)
(2) Afinai[l... N'] (residues from A involving in final alignment)
(3) Bfinaill...N'] (residues from B involving in final alignment)
(4) A (RMSD between Afinat and Binai)
procedure:
1. Soia =0; N' = N; Afinat = Ainit; Bfinat = Binit /* Initialize */
2. while (TRUE)

3. A = CalculateRMSD (N, Afinai, Bfinat) /* algo. given in Wul7 */

4 S=3-N/1+A) /* Eq. 2 */

5 if (S < Syiq) then exit while /* if the score diverges, then stop */
6. Sold = S /* mark the last best score */

7. Remove the farthest residue pair from Ay;,q; and Byinai

8 N =N'—-1 /* reduce number of aligned pairs */
9. return (N', A¢inal, Binal, A)

Fig. 6. Refining initial alignment into final alignment.

20 - +
+
15 F + ++
[a) + +
2! +
= 10F ++  #7 % +
R + +
I
S ﬁ;t + £+
e + + +
O 1 1 1 1

No. of Aligned Residue Pairs

Fig. 7. Distribution of RMSD and alignment length before refinement.

20 |+
A 15
2]
= 10
o~
L +
3 ﬁ*%+#+ 4
0 HHFEH R+ |

0 100 200 300 400 500
No. of Aligned Residue Pairs

Fig. 8. Distribution of RMSD and alignment length after refinement.

e Reduced rows: In the row-row alignment step, it is observed that the large
Cq—C, distance values are not very important in determining the row-row
matching scores, and hence can be ignored. These distance values are removed
from the rows of the distance matrix, and the resultant reduced rows can



MatAlign: Precise Protein Structure Comparison 1207

be used for alignment. For example, in Fig. 3, if we use the cutoff distance
of 10 A, the reduced version of the first row of A’s distance matrix will be:
{0.00, 1.00,2.00, 3.00,4.00}. In our actual implementation, we use the cutoff
value 21 A which is empirically determined.

Alignment within a band: Both in the alignment of rows and alignment
of the score matrix, it can be observed that the two residues whose ordi-
nal positions are quite different rarely align. For example, in Figs. 3 and 4,
when we align the first two rows of A and B, A’s cell #2 and B’s cell #5
are not likely to be aligned although their values are quite close. So, we define
a band, and only the residue pairs that fall into the band are considered for
alignment. In other words, for residue 7 and j to be aligned, the condition
(i —Bandwidth < j < i+ Bandwidth) must be satisfied. The Bandwidth can be
calculated as:

Bandwidth = #Gaps + abs(|A| — | B|) (7)

where #Gaps is the number of allowable gaps and abs(]A| — | B|) is the length
difference between A and B. In Fig. 5, the residue pairs falling into the band-
width of 2 are shown as gray. In our implementation, we use #Gaps = 50. The
use of reduced rows and bands significantly improves the speed of the scheme
as discussed later in Sec. 4.1.5.

Application of weights to row—row matching scores: In the cases of
distantly related protein structures, for a row in one protein’s distance matrix,
there are several rows in the other distance matrix which give the very similar
row-row matching scores. As such, the initial alignment path based on these
not-too-different scores may sometimes be incorrect. To reduce this effect, we
multiply the row—row matching scores with the percent of the aligned residues.
For example, in Fig. 5, SM(1, 1] will now be 4.56 x (5/6), because the alignment
of A’s row #1 and B’s row #1 results in five aligned residue pairs out of six
pairs which is maximally possible. This heuristics improves the accuracy of the
scheme.

Use of multiple initial alignment seeds: Sometimes the default initial align-
ment produced from the first step may not lead to the optimal final alignment
in the second step. To explore the possibilities for a better final alignment, we
have to try multiple initial alignments. When extracting the initial alignment
path from the dynamic programming’s matrix, we set a threshold and if the
value in a matrix’s cell is lower than the threshold, we avoid this cell in our
alignment path. We generate 100 different initial alignment paths using 100
different threshold values, refine each path, and select the one that gives us
the best score S. This approach substantially improves the scheme’s accuracy
although it slightly affects the scheme’s run-time efficiency. The combined effect
of the use of row—row matching weights and the use of multiple alignment seeds
on the accuracy is discussed later in Sec. 4.1.5.
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3.4. Time complexity

The worst-case time complexity for finding the initial alignment of two proteins
A and B with |A| and |B| residues, respectively, is O(|]A|?|B|?). (Every row in
A’s distance matrix has to be compared against every row in B’s distance matrix,
and each comparison using dynamic programming costs O(|A||B|).) Nonetheless,
because of the utilization of reduced rows and bands as mentioned in the above
sub-section, the actual running time is reasonably fast.

The worst-case time complexity for the refinement step is O(min(|A|,|B|)?).
(The maximum possible length of the initial alignment is min(|4|, |B|), and thus
at most min(|Al,|B|) refinement steps will be required. Each refinement step
involves the calculation of RMSD which can be carried out in linear time, i.e.,
O(min(|Al, |B])) time.)

4. Experimental Results and Discussions

We assess the accuracy and speed performances of our proposed MatAlign method
in relation with the established structural alignment methods, namely DALI?
(DaliLite implementation'® v2.4, released 2000) and CE? (latest version, released
2004). These two are among the most accurate and the most widely used of the
existing structural alignment methods.'® We conduct two types of experiments to
access the respective accuracies of MatAlign, DALI and CE. Firstly, we measure
the qualities of their alignment results using different criteria. Secondly, we evaluate
the biological relevances of their alignment results by means of a database search
test. We also compare the speeds of the three methods in both experiments.

Although MatAlign should also be compared with SSAP,* which also uses the
two-level dynamic programming approach, we omitted this because the latter can-
not be successfully ported to our computing platform. However, in terms of run-time
efficiency, we can conjecture that MatAlign may be four to six times faster than
SSAP. The experimental results by Kolodny et al.'? show that SSAP is two times
slower than DALI, and we show here that DALI in turn is two to three times slower
than MatAlign. In terms of accuracy, Kolodny et al. reports that DALI provides
better results (larger ROC area values) than SSAP in database search tests. Here,
we show that MatAlign provides better results than DALI in alignment quality test
and as good results as DALI in database search test.

4.1. Experiment 1: on alignment quality

Here, we assess the alignment quality of MatAlign in relation with those of DALI

and CE. We use the benchmark of 68 protein pairs selected by Fischer et al.'®

4.1.1. RMSD and alignment length

In Fig. 9, it can be observed that MatAlign generally tends to produce a smaller
RMSD value (which means better fitted alignment) than DALI and CE do. The
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RMSD (Angstroms)

0 10 20 30 40 50 60
Protein Pair ID

Fig. 9. Distribution of RMSD values.
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Fig. 11. Distribution of normalized score (NS) values. (Higher values mean better alignments.)

average RMSD of MatAlign for 68 benchmark protein pairs is 1.81 A, and those of
DALI and CE are 2.77 and 2.88 A respectively.

On the other hand, MatAlign’s alignment length is relatively shorter than those
of DALI and CE as can be seen in Fig. 10. For simplicity of presentation in the
figure, the alignment length is converted to the percent of aligned residue pairs,
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which is a ratio of the number of aligned residue pairs to the length of the shorter
protein. (The length of the shorter protein is the maximum possible length of the
alignment.) The average percent of aligned residue pairs of MatAlign is 67%, and
those of DALI and CE are 82% and 83%, respectively.

Nonetheless, MatAlign’s alignment length is significantly large enough. It covers
over at least 50% of the maximum possible alignment length in 91% (62 out of 68) of
the cases, and at least 35% of the maximum length in all of the 68 cases. Thus, it can
be concluded that MatAlign is able to detect the highly conserved yet significantly
large structural cores in proteins.

4.1.2. Accuracy assessment by different criteria

It is observed that in terms of the alignment score criterion S by Alexandrov and
Fischer!® described in Eq. (2), MatAlign can achieve better (higher) alignment
scores than DALI in 55 out of 67 cases® (i.e. 81%), and better scores than CE in
54 out of 67 cases® (79%). We show the distributions of the score values for DALI,
CE and MatAlign in Fig. 11. Again, for convenience of presentation, the alignment
score (S) is translated into the normalized score (NS), which is the ratio of S to
the maximum possible alignment length. The average NS value of MatAlign is 0.77
whilst those of DALI and CE are 0.68 each.

However, this result may not be very convincing of the better accuracy achieve-
ment of MatAlign, because the scoring criterion S is also used as the native score of
MatAlign. On the other hand, DALI and CE use their respective Z-scores as their
native scores. This means that while the score of MatAlign is optimized in terms
of S, those of DALI and CE are not.

Thus, we also compare MatAlign with DALI and CE using the other three
scoring criteria which are not the native scores of any of these three methods.
These are similarity index (SI)!* (Eq. (3)), match index (MI)!* (Eq. (4)), and
structural alignment score (SAS)!® (Eq. (5)). These three have also been used in a
recent evaluation study on various structural alignment methods by Kolodny et al.
(2005)12.

It is observed that MatAlign can provide better results than both DALI and
CE in a majority of cases in terms of all these three criteria!l The summary of the
accuracy comparison of MatAlign against DALI and CE in terms of all the four cri-
teria is presented in Table 1. The detailed statistics are given in the supplementary
information webpage.

4.1.3. Accuracy assessment by adjusted RMSD
In addition to comparing the alignment accuracies of DALI, CE and MatAlign in

terms of the above four criteria, it will be interesting to compare these methods in

2DALI cannot produce any alignment result for imdc vs lifc.
PCE cannot produce any alignment result for 1bbt1 vs 2plvi.
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Table 1. Accuracy comparison of MatAlign vs. DALI and CE on the benchmark
protein pairs by Fischer et al.

No. of cases (out of 67) S SI MI SAS
MatAlign is better than DALL 55 (81%) 58 (85%) 52 (76%) 58 (35%)
MatAlign is better than CE 54 (79%) 60 (88%) 53 (78%) 60 (88%)

Adjusted RMSD (Angstroms)

0 10 20 30 40 50 60
Protein Pair ID

Fig. 12. Distribution of adjusted RMSD values. (Curve smoothing is used for the missing values.)

terms of their “adjusted” RMSD values at a fixed alignment length. For a given
alignment case, from the three different alignment results by the three methods,
we choose the one with the shortest alignment length as the benchmark. The other
two longer alignments are iteratively refined by removing the furthest pair in each
step (as described in Sec. 3.2) until their alignment lengths become equal to the
shortest one. Then, the resulting adjusted RMSD values of the three methods are
compared.

It is observed that MatAlign achieves better (smaller) adjusted RMSD values
than DALI in 36 out of 67 cases (i.e. 54%), and better values than CE in 35 out
of 55 cases® (64%). The average adjusted RMSD value for MatAlign is 1.794, and
those for DALI and CE are 1.799 and 1.891, respectively. The distributions of the
adjusted RMSD values for the three methods are shown in Fig. 12, and the detailed
information is given in the supplementary information webpage.

4.1.4. Speed

In terms of speed, MatAlign is about three times faster than DALI, and about as
fast as CE on Sun Ultra Sparc II with two 480 MHz CPUs and 4 GB main memory,
running Sun OS 5.7. Figure 13 shows the execution times of the three methods. The
average time per pairwise alignment for MatAlign is 24.8 s, and those for DALI and
CE are 78.1 and 28.1s, respectively.

“We are not able to extract the detailed residue-residue alignment information from 12 of the CE
alignment results.
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Fig. 15. Effect of accuracy enhancement (weighting of row—row matching scores and use of multiple
initial alignment seeds).

4.1.5. Significance of enhancements

The significance of the speed and the accuracy enhancements (as described in
Sec. 3.3) is shown in Figs. 14 and 15, respectively. It is observed that the speed
enhancement reduces the average running time from 225.9 to 24.8s (ninefold
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speedup). Similarly, the accuracy enhancement improves the average normalized
score NS from 0.67 to 0.77 (15% improvement).

4.2. FExperiment 2: on biological relevance

In order to assess the biological meaningfulness of the results provided by MatAlign,
we conduct a database search test on SCOP? structural domains.

We randomly select 10 proteins from Globin-like superfamily (SCOP classifi-
cation a.1.1.%) and 10 proteins from Protein Kinases-like (PK-like) superfam-
ily (SCOP classification d.144.1.%) from the representative ASTRAL data set
(http://astral.berkeley.edu/) with less than 25% sequence homology. These 20 pro-
teins are designated as the query proteins. We again randomly select 180 proteins,
other than Globin-likes and PK-likes, from the same representative data set. We
combine these 180 proteins with the above-mentioned 20 query proteins to form
the target database of 200 proteins. (The data sets are given in the supplementary
information webpage.)

We run 20 queries — taken from the Globin-like and PK-like superfamilies —
against the target database. For each query, we rank the database proteins by their
alignment scores (.S) with respect to the query. We also conduct the same database
search tests for DALI and CE. The results are ranked by their respective Z-scores
and then by their RMSD values in cases of equal Z-scores.

4.2.1. Search accuracy

For the Globin-like queries, MatAlign achieves a perfect result. For each of the 10
queries, it can always successfully rank the Globin-like proteins in the database as
the top scorers. The same result is also attained by both DALI and CE.

For the PK-like queries, MatAlign gets a nearly-perfect result. It ranks the PK-
like proteins as the top scorers in 9 out of 10 query cases. Even in the incorrect case,
it only ranks a single non-PK-like protein among the top 10 scorers. (For the query
1ia9A (SCOP classification d.144.1.5), MatAlign incorrectly ranks a non-PK-like
protein 1a48_ (SCOP classification d.143.1.1) at the fifth position.)

DALTI as well achieves a very similar nearly-perfect result for the PK-like queries.
(It also incorrectly ranks 1a48_ at the ninth position for the query 1ia9A.) But,
the accuracy of CE for the PK-like queries is inferior to those of both MatAlign
and DALIL It incorrectly ranks at least one non-PK-like protein among the top
10 scorers in all but one cases. In the worst case, it ranks 7 non-PK-like proteins
among the top 10 scorers. The accuracy comparison of DALI, CE and MatAlign is
summarized in Table 2 and detailed in the supplementary information webpage.

4.2.2. Speed

The run-time statistics for DALI, CE and MatAlign for the 20 queries on the
database of 200 proteins are shown in Table 3. The results are more or less similar
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Table 2. Number of incorrect (non-PK-like) proteins among the top 10 scorers for the PK-like
queries.

Method lapmE 1cjaA  lcsn.  1e8xA  1lia8A  1lia9A 1j71A  1jvpP  1gpcA  1tkiA

DALI 0 0 0 0 0 1 0 0 0 0
CE 1 1 1 2 1 7 0 1 1 1
MatAlign 0 0 0 0 0 1 0 0 0 0

Table 3. Time statistics of DALI, CE and MatAlign for 20 queries on 200 proteins.
(DALT’s time statistics are only for the valid alignments.)

Method Total time  Average time per query  Average time per alignment
(hh:mm:ss) (hh:mm:ss.mm) (hh:mm:ss.mmmm)

DALI 37:36:04 02:34:15.66 00:00:46.2783

CE 31:26:42 01:34:20.10 00:00:28.3005

MatAlign 25:45:53 00:17:17.65 00:00:23.1883

to those of the previous experiment in Sec. 4.1. Here, MatAlign is two times faster
than DALI, and has about the same speed as CE. (It should be noted that among
all the 20 x 200 = 4000 alignments, DALI does not produce any alignment results
for 1075 of them. Thus, we only take the time statistics for the remaining 2925 valid
alignments into account.)

5. Conclusion

In this paper, we have presented a new scheme for comparing 3D protein structures
based on the alignment of distance matrices. The experimental results show that the
method is accurate and biologically relevant. It will be useful to biologists for the
detailed comparative analysis of protein structures. As MatAlign has been shown
to have achieved the better results than the established methods such as DALI and
CE in a majority of our test cases, it can be used as an alternative tool or at least as
a supplementary tool along with those established ones. As a future work, we will
try to implement MatAlign as a parallel system with a view to improve its speed.
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