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Abstract

Natural processes often generate some observations more frequently than others.
These processes result in an unbalanced distributions which cause the classifiers to
bias toward the majority class especially because most classifiers assume a normal
distribution. The quantity and the diversity of imbalanced application domains
necessitate and motivate the research community to address the topic of imbalanced
dataset classification. Therefore, imbalanced datasets are attracting an incremental
attention in the field of classification. In this work, we address the necessity of
adapting data pre-processing models in the framework of binary imbalanced datasets,
focusing on the synergy with the different cost-sensitive and class imbalance
classification algorithms. The results of this empirical study favored the Synthetic
Minority Over-sampling Technique (SMOTE) in the case of relativity high Imbalance
Ratio (IR) and favored Neighborhood Cleaning Rule (NCL) in the case of relativity
small IR. Further improvement was suggested to enhance NCL scalability with IR,
and the proposed method is named NCL+. The outcomes showed that NCL+

outperformed NCL especially with the datasets of relatively high IR.
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CHAPTER 1

Introduction

1.1 Problem Definition

Natural processes often generate some observations more frequently than others.
Therefore, they produce samples that may not have a normal class distribution. The
distribution could be close to normal. However, in other cases the class distribution
could be highly imbalanced. Generally, most classification algorithms assume normal
class distribution. However, in the case of imbalanced datasets, there are majority
classes that bias the classifiers’ decision. Classifiers tend to focus on the majority
classes and ignore the minority classes. There are many cases in which the minority
class represents the class of interest. The problem appears in several real-world data
assembled from different real application areas. In some cases, such as (Johnson,
Ryutaro, & Hoan, 2013), it is necessary to correctly classify the minority class.
Generally, normal classifiers would misclassify many samples of the minority class

that represents diseased trees. Because the imbalance distribution poses many



challenges to widely used classifiers such as decision trees, induction models, and

multilayer perceptrons (Jo & Japkowicz, 2004).

1.2 Motivation

Classifiers are developed to minimize the error rate. Consequently, they tend to be
negatively affected by the majority class in the case of imbalanced data classification
problems, and often perform poorly. A general-purpose framework is needed to
handle the classification of imbalanced datasets. Therefore, in further details, this
research addresses different data pre-processing models along with a diverse set of
classifiers. The aim of this research is to find the best method to tune the combination
of imbalanced sampling and classification paradigms with respect to the Imbalance
Ratio (IR). The IR is defined as the ratio of the number of instances in the majority

and the minority classes (Fernandeza, Garciaa, Jesusb, & Herreraa, 2008).

Specifically, the objective of this research is to answer the following questions:
1. Should we sample the data in case of employing any class imbalance or cost-
sensitive classifiers?
2. What is the best re-sampling technique that improves the classification when
using class imbalance or cost-sensitive classifiers?
3. Could the successful re-sampling technique be further improved?
Those questions are answered using two empirical studies that will be discussed in
further details in the following sections. This paper is organized as follows: Chapter 2
discusses the imbalanced data classification handling and the related work. Chapter 3
demonstrates the empirical studies conducted. While Chapter 4 includes the results

and discussion. Finally, the conclusion summarizes the findings and suggestions.



CHAPTER 2

Dealing With Class Imbalance

The machine learning community addresses the issue of imbalanced dataset
classification using two main approaches on two levels. In this section, the two main
approaches are demonstrated. Furthermore, several data preprocessing techniques,
which will be analyzed in later sections, are reviewed. The focus of this research is

based on the second approach.

2.1 Method Level (Internal)
Many algorithms have been proposed to address the issue of class imbalance.

Furthermore, algorithms have been modified to consider imbalanced datasets.



Specifically, the modification may focus on adjusting the cost function, changing the
probability estimation, or adapting recognition-based learning (Fernandeza, Garciaa,
Jesush, & Herreraa, 2008). The set of algorithms that work on the method level could
be efficient. However, in many cases, these algorithms are application specific. Thus,
they need special knowledge about the classifier and application (Ferndndeza,
Garciaa, Jesush, & Herreraa, 2008); (Galar, Fernandez, Barrenechea, Bustince, &

Herrera, 2011).

2.2  Data Level (External):

Several pre-processing research papers such as (Leo, 1996) (Veropoulos, Campbell,
& Cristianini, 2007) (Laurikkala, 2001) (Hu, Liang, He, & Ma, 2009) (Zhou & Liur,
2006) (Wang & Yao, 2009) have introduced and evaluated data sampling techniques.
The purpose of pre-processing is to balance and normalize the class distribution
before passing the dataset to the classifier. Sampling is the most commonly used
approach for overcoming misclassification problems due to imbalanced data sets

(Lokanayaki & Malathi, 2013). Sampling follows two basic approaches:

2.2.1 Over-Sampling
The models in this category modify the size of the minority class. The aim is to
increase the samples of the minority class. Five different over-sampling models will

be reviewed in this section.

2.2.1.1 Synthetic Minority Over-sampling Technique (SMOTE)



SMOTE is an over-sampling approach that is responsible for creating synthetic
samples of the minority class using the feature space. Random samples are selected

from the K nearest neighbor (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).

The key factor of success of SMOTE is the broader decision regions of the minority
class that is created using the nearby minority samples (Chawla, Bowyer, Hall, &

Kegelmeyer, 2002).

2.2.1.2SMOTE_TL

Synthetic Minority Over-sampling TEchnique + Tomek's SMOTE_TL is an
integration of both SMOTE and TL. TL in this case operates as a cleaning method.
Thus, instead of removing elements from the majority class, this model removes
samples from both classes. The main objective of this technique is to balance the

dataset and to enhance the class clusters (Batista, Prati, & Monard, 2004).

2.2.1.3 Selective Preprocessing of Imbalanced Data2 (SPIDER?2)

The SPIDER2 consists of two main phases. In the first phase, the Edited Nearest
Neighbor Rule ENNR is used to address the samples’ local characteristic. Then in the
second phase, the model removes the majority class samples that resulted in
misclassification. Simultaneously, it performs a local over-sampling to the minority

class (Napieralla, Stefanowski, & Wilk, 2010).

2.2.1.4 Random Over-Sampling (ROS)
ROS’s main objective is to balance the data distribution by creating random

replications of the samples of the minority class. The main challenge to ROS is



overfitting, since it generates similar copies to the samples of the minority class

(Fernandeza, Garciaa, Jesusb, & Herreraa, 2008).

2.2.1.5 Adaptive Synthetic Sampling (ADASYN)

ADASYN is an adaptive model. There are two basic objectives of ADASYN that are
adaptive learning and minimizing the imbalance ratio. So, based on the input the
algorithm calculates the degree d of class imbalance. The d value is then compared to
a threshold. If it passed he comparison, then the number of synthetic data examples is
determined using G = (m; — mg). where m; is the number of majority class
samples, my is the number of minority class samples and B € [0, 1] is a parameter that
defines the required balance level after synthetic datais generated. When = 1 a fully
balanced dataset is produced. Afterwards, k’s nearest neighbors are calculated using
the Euclidean Distance function. The final step is to normalize by randomly selecting

one minority data example from the k nearest neighbors (He, Bai, Garcia, & Li, 2008).

2.2.2 Under-Sampling
The aim of the under-sampling models is to reduce the size of the majority class set

by removing some of majority class instances.

2.2.2.1 Neighborhood Cleaning Rule (NCL)

Neighborhood cleaning rule (NCL) is oriented toward employing Wilson’s edited
nearest neighbor rule ENN. In (Laurikkala, 2001), experimental results showed that
the NCL contributed 20-30% improvement in imbalance classification. The NCL
model maintains all the samples of the class of interest C and removes samples from

the rest of the data O where O = T — C. This process is accomplished in two phases.



In the first phase, ENN is used to find the noisy data A; in O. Specifically, 3-ENN is
used to remove, samples with a different class to the majority class of the three
nearest neighbors, It removes samples that have different classes to at least two of
their three nearest neighbors. Subsequently, the neighborhoods are processed again
and a set A, is created. Then, the three nearest neighbor samples that belong to O and
lead to C samples misclassification are inserted in the set A,. Finally, the data is
reduced by eliminating sampling that belongs to both sets A; and A, A; UA,

(Laurikkala, 2001). Figure 2.1 shows the NCL algorithm.

I. Split data T into the class of interest C and the rest of data O.
2. Identify noisy data A, in O with edited nearest neighbor rule.
3. For each class C,in O
if (x € C, in 3-nearest neighbors of misclassified y € C)
and (| C,| 0.5-|C|)thenA,={x]UA,
4. Reduced data S=T-(A UA))

Figure 2.1, NCL pseudo code (Laurikkala, 2001)

2.2.2.2 Condensed nearest Neighbor rule + Tomek links (CNN_TL)

The First Condensed Nearest neighbor rule CNN is applied to reduce the majority
subset by removing samples that are far from the decision border. Then, Tomek links
is applied to remove the noisy samples and the majority samples that are near the

decision border (Fernandeza, Garciaa, Jesusb, & Herreraa, 2008).

2.2.2.3 Class Purity Maximization (CPM)
The CPM algorithm follows a recursive procedure. At first, it defines two center point
samples. One of them represents the minority class while the other represents the

majority class. Afterwards, it uses those two points to partition that dataset into two



clusters C; and C,. Then, it calculates the impurity of each cluster. Finally, it makes a
comparison between the parent’s impurity and the resulting cluster impurity. It
recursively calls itself until the stopping condition occurs. The stopping condition is
reached when one of the clusters has less impurity than its parent or a singleton is

reached (Yoon & Kwek, 2005).

2.2.2.4 Under-sampling Based on Clustering (SBC)

SBC adapts clustering methods to process the imbalanced class distribution. The
algorithm follows two basic steps. First, it divides the training dataset into clusters.
Then for each cluster, the ratio of each class is calculated and considered. If a cluster
contains more minority classes than the majority, then it will act like the minority
class. Likewise, if a cluster contains more majority classes than the minority, then it

will act like the majority class (Yen & Lee, 2006) .

2.2.2.5 Tomek Links (TL)

TL uses a distance function to determine the noisy samples and remove the majority
class samples that lay on the borderline of minority class. TL can be used as a
cleaning method to removes data from both classes. So, given that two samples E; and

E; from different classes and the distance between E; and E; is given by d(E;, E;), then
the pair (E; E;) represent Tomek link if there is no sample E, exist such as

d(E;, Ey) < d(E;, E)) or d(E;, Ex) < d(E;, E;) (Batista, Prati, & Monard, 2004).

2.3 Evaluation Criteria in Imbalanced Domains



The evaluation process is a critical factor in assessing classifier’s performance. In
binary classification problems, the confusion matrix, shown in Table 2.1, is used to
assess the performance. Accuracy is the most common measurement used to evaluate

classifiers’ performance. The accuracy can be calculated using the following formula:

TP + TN

ACC = S TN+ FP+ TN

where TP is the percentage of correctly classified positive instances, TN is the
percentage of correctly classified negative instances, FP the percentage of
misclassified positive instances, and FN the percentage of misclassified negative
instances.

Generally in the case of imbalanced datasets the classifiers are biased towered the
majority class. Assuming that negative is the majority class, then TN could be
abnormally high in a normally distributed class dataset, depending on the Imbalance
Ratio IR. The increase in TN will increase the classification accuracy, where, many of
the minority class samples of interest are misclassified. Consequently, the accuracy
could be an unreliable measurement for imbalanced dataset classification. To get a
better understanding, consider a case of 100 samples in a dataset in which 97% are
negative and 3% positive. Generally, predicting the majority would produce 97%
accuracy. However, this strategy is not accurate enough to classify the positive class

instances.



Table 2.1: Confusion Matrix for Binary Classification

Positive Prediction | Negative Prediction

Positive Class | True Positive TP | False Negative FN

Negative Class | False Positive FP | True Negative TN

Alternatively, the Area Under the receiver operating characteristic ROC Curve (AUC)
could be used to provide the necessary measurements to evaluate the imbalanced data
classification (Ling & Li, 1998; Provost & Fawcett, 2001). The AUC provides the
best criteria that suites this type of evaluation. It relies on the ROC that evaluates the
algorithms’ ability to correctly classify samples relative to each other. Specifically,
the ROC provides a visualization of the relationship between TP.,: and FP. .. The

AUC can be measured by calculating the area under the ROC curve. The AUC of a

perfect model is 1.
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CHAPTER 3

Experimental Study

This section describes the empirical study that was carried out in two phase. In the
first phase, a comparison between 11 classifiers was conducted. Machine Learning
Repository UCI’s imbalanced datasets (Center of Machine Learning and Intelligent,
2014) were trained using different cost-sensitive and class ensembles algorithms
under 3 different data pre-processing scenarios. The main target of this phase is to
find the best combination of data pre-processing and classification procedures that
best suites the binary imbalanced data classification with respect to IR, number of
instances, and number of attributes. The second phase of this experimental study was
oriented to study and suggest improvements of a successful pre-processing model
resulting from the first phase.

Ten real-world datasets with different Imbalance Ratios (IR) obtained from (Alcala-
Fdez, et al., 2011) were considered in this empirical study. The focus is on two-class

imbalanced datasets. Thus there are only two classes, a positive and a negative. The

11



majority class is represented by the negative class label whereas the minority class is
represented by the positive class label. Furthermore, this study considers the IR. The
datasets processed in this study ranges from low IR to high. Thus, they were
categorized into two main groups based on the IR level. The datasets that had an IR
between 1.5 and 9 were represented in the low IR category. Whereas, the datasets
with an IR greater than 9 were represented in the high IR category. The datasets have
different number of instances, features, and feature types. Furthermore, all the sets
require a binary classification, since they are composed of two main classes, a
negative majority class and a positive minority class.

Table 3.1 below summarizes the datasets’ specifications for each set. It shows the IR
category and ratio and identifies the minority and majority classes and their relative
ratios. It also shows the number of features and instances. The table is sorted in

ascending order based on IR.

12



Table 3.1: Datasets specification summary
DataSet Imbalance ratio IR number | Attribute | number | Missing Class(Min,Maj)
Name of Type of Values
Features instances

ecoli-0_vs_1 between 1.5 and 9 1.86 7 Real 220 No im, cp
Wisconsin between 1.5 and 9 1.86 9 Integer 683 YES malignant,benign
vehiclel between 1.5 and 9 3.23 18 Integer 846 No Van, remainder
New-thyroid2 between 1.5 and 9 5.14 5 Integer/Real 215 No hyper,remainder
page-blocks0 between 1.5 and 9 8.77 10 Integer/Real 5472 No remainder, text
Vowel0 >9 10.1 13 Integer/Real 988 No hid,remainder
Glass5 >9 15.47 9 Real 214 No containers,remainder
Glass6 >9 22.81 9 Real 214 No tableware,remainder
yeast6 >9 32.78 8 Real 1484 No ME1, remainder
abalone19 >9 128.87 8 Real/ 4174 No 19, remainder

Nominal

valued

Note: positive = minority and negative = majority

3.1  Experimental Design

This research focused on addressing the synergy between cost-sensitive and
ensembles for class imbalance classifiers and different pre-processing techniques. The
target was to examine the performance of those classifiers under different data pre-
processing techniques.

In this research a 5-fold cross validation was used. Thus, training and test sets were
partitioned into five training and test sets. In the results, the average of the five
data/test set partitions were considered for each dataset.

The design of this empirical study can be summarized as the following. In total, 11 5-
fold CV trials were conducted for 10 different datasets resulting in 550 training
datasets. These datasets were examined under 11 different pre-processing conditions,
no-sampling, under-sampling, and over-sampling resulting in 6050 processed
datasets.

The trials were conducted using different datasets with different IRs and number of

instances. The experiment was carried out using 11 classifiers categorized into two
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main classification categories. The first group is cost-sensitive classification. In this
study, 3 classifiers from the cost-sensitive classification were deployed, namely C4.5
Cost-Sensitive (C4.5CS), Multilayer Perceptron with Backpropagation Training Cost-
Sensitive (NNCS), and SVM Cost-Sensitive (SVMCS). The remaining 8 classifiers
were deployed from the second category named ensembles for class imbalance. The
eight classifiers used were, Adaptive Boosting with C4.5 Decision Tree as Base
Classifier (AdaBoost), Adaptive Boosting Second Multi-Class Extension with C4.5
Decision Tree as Base Classifier (AdaBoostM?2) , Cost Sensitive Boosting with C4.5
Decision Tree as Base Classifier (AdaC2) , Bootstrap Aggregating with C4.5
Decision Tree as Base Classifier (Bagging) , Over-sampling Minority Classes
Bagging 2 with C4.5 Decision Tree as Base Classifier (OverBagging2) , Modified
Synthetic Minority Over-sampling TEchnique Bagging with C4.5 Decision Tree as
Base Classifier (MSMOTEBagging) , Under-sampling Minority Classes Bagging 2
with C4.5 Decision Tree as Base Classifier (UnderBagging2) , and Under-sampling
Minority Classes Bagging to Over-sampling Minority Classes Bagging with C4.5
Decision Tree as Base Classifier (UnderOverBagging). The classifiers are discussed

in further details below.

3.1.1 Cost-Sensitive Classification

Cost-sensitive learning is a process of inducing models from imbalanced distributed
data. It quantifies and processes the imbalance. There are 9 main cost types that cost-
sensitive learning models depend on for reducing the total classification cost. The
most researched two types are misclassification total cost and test cost (Qin, Zhang,
Wang, & Zhang, 2010). The following is a brief description of the three classifiers

used from this category.
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3.1.1.1 C4.5CS

This classifier is an instance—weighting cost-sensitive model. Depending on the

greedy divide-and-conquer technique, it produces considerably smaller trees. It

concentrates on total misclassification cost reduction. Additionally, it targets the cost

of the size of the tree and the quantity of high cost errors. It is mainly designed for

binary classification problems. The results showed that although C4.5CS has more

total misclassification errors than C5 as shown in Table 3.2 below, which is 0.07 on

average, C4.5CS is less likely to make high cost errors (Ting, 2002).

Table 3.2: Average misclassification costs (Ting, 2002)

Dataset C4.5CS C5 CART Discrim NaiveBayes
Heart 0.404 0.430 0.452 0.393 0.374
German Credit 0.303 0.304 0.613 0.535 0.703

Table 3.3 demonstrates the specification used in this study.

Table 3.3: Parameter specification for C4.5CS

Parameters Value
Prune True
Confidence Level 0.25
Instances per leaf 2
Minimum Espected Cost | True
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3.1.1.2 Neural Networks Cost-Sensitive (NNCS)

The cost-sensitive neural networks concentrates on minimizing the total
misclassification cost. The original backpropagation learning process consists of a
multilayered feed-forward neuron network that implements the backpropagation
technique to achieve the weight gradient descent. However, this procedure alone is
not sufficient for the cost-sensitive classification performance. Therefore, a
modification in the probability estimates of the network throughout the test phase was

suggested. The probability P(i) that a sample belongs to a class i is modified to

CostVector[i]P(i)

¥ CostVector[i]P(i) The modified

account for misclassification cost using P'(i) =

probability promotes the class of higher estimated misclassification costs (Kukar &
Kononenko, 1998). (Zhou & Liur, 2006) empirical study revealed that generally soft-
ensemble and threshold-moving improve the cost-sensitive neural networks training.

Table 3.4 shows the parameter specification used for NNCS.

Table 3.4: Parameter specification for NNCS

Parameters Value

Hidden Layers | 2

Hidden Nodes | 15

Transfer Htan
Eta 0.15
Alpha 0.10
Lamda 0.0
Cycles 10000
Improve 0.01
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3.1.1.3 SVM Cost-Sensitive (SVMCYS)
A Support Vector Machine (SVM) was successfully applied to many classification
problems. However, it is negatively affected by the majority class in case of
imbalanced datasets. Consequently, a cost-sensitive SVM was developed to overcome
the biased classification produced by the imbalance class distribution and to lower the
error rate and misclassification cost. The cost-sensitive SVM formula targets two
types of errors using two loss functions. SVMCS follows this formula (Cao,Zhao, &
Zaiane, 2013; Zheng, Zou, Sun, & Chen, 2011; Veropoulos, Campbell, & Cristianini,
2007).
1 k
Rw,®) = Sl + (Z §i>,
i=1

sityi(xp.w+b)=>21-58,§=0i=1,..,k

where k denotes the sample number, x; denotes the predictive attribute, [lwll?
estimates the complexity of the model, Y7, §; estimates the training error, whereas
the constant C controls the tradeoff between the model complexity and the training
error. Table 3.5 shows the parameter specification related to SVMCS classifier.

Table 3.5: Parameter specifications for SYMCS

Parameters Value

KERNEL type | POLY

C 100.0
eps 0.001
degree 1
gamma 0.01
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3.1.2 ENSEMBLES FOR CLASS IMBALANCE
Ensembles aim to enhance a classifier’s accuracy. They are developed to merge the
output of collection of training classifiers into a single output. The proposed
taxonomy for the employed algorithms from this category is described in Figure 3.1

below.

AdaC2

Cost-Sensitive Cost -Sensitive

Ensembles Boosting AdaBoost

AdaBoostM2

ENSEMBLES FOR

‘ CLASS IMBALANCE — " OverBagging2
—— Over-Bagging )
. MSMOTEBagging

s - UnderBagging2
Under-Bagging <k q
\ UnderOverBagging

Bagging

|Data Pre-processing
+ Ensemble e Bagging-Based
| Learning

Figure 3.1, “Ensembles for class imbalance” algorithms proposed taxonomy

3.1.2.1 Boosting-Based Cost-Sensitive Ensembles

The boosting-based algorithms were added to this category. The boosting-based
algorithms embed data preprocessing procedures into boosting algorithms. After each
round, the boosting-based algorithms modify the distribution of the weight toward the
minority class (Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2011). AdaC2,

AdaBoost, and AdaBoostM2 are included in this category.
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3.1.2.1.1 Adaptive Boosting with C4.5 Decision Tree as Base Classifier
(AdaBoost)

This classifier gradually improves the classification after each iteration. It uses the

whole training dataset to improve the classification for each misclassified instance

after each iteration by increasing their weights. On the other hand, the classifier

decreases the weights of the properly classified instances. Consequently, it changes

the distribution of the training dataset (Galar, Fernandez, Barrenechea, Bustince, &

Herrera, 2011; Hu, Liang, He, & Ma, 2009).

3.1.2.1.2 Cost Sensitive Boosting with C4.5 Decision Tree as Base Classifier
(AdaC2)
The AdaC2 algorithm is a Boosting-based. Its weight function was edited to consider

the cost. The weight function was replaced by the following formula:

Yiyi=he (x1) Cj De(i)
Yiyi # he (x1)Ci De(d)

Dyy1 (D) = C; Dy(i). e~ =t G0 i where o, = %m

Table 3.6 shows the parameter specifications of AdaC2.

Table 3.6: Parameter specifications of AdaC2

Parameters Value
Pruned True
Confidence 0.25
Instances per Leaf 2

Number of Classifiers | 10
Cost Setup Adaptive
Cost Majority Class | 0.25

Cost Minority Class | 1
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3.1.2.1.3 Adaptive Boosting Second Multi-Class Extension with C4.5 Decision
Tree as Base Classifier (AdaBoostM2)

Table 3.7 shows a description of parameter specification of AdaBoostM2.

Table 3.7: Parameter specification of AdaBoostM2

Parameters Value
Pruned True
Confidence 0.25
Instances per Leaf 2

Number of Classifiers | 10
Train Method No-Resampling
Cost Majority Class | 0.25

Cost Minority Class | 1

3.1.2.2 Bagging-based Ensembles

Bootstrap aggregating based methods rely on producing different predictor versions
and use them to construct an aggregated predictor. Thus, the methods use a
bootstrapped replicates of the original dataset to train the classifiers. In Bagging, the
original dataset is randomly sampled and passed to the classifiers. However, in
overBagging an over-sampling tegnique is embeded in data pre-processing procedure.
Additionally, in underBagging, an under-sampling tegnique is used to process the
dataset (Leo, 1996 ;Wang & Yao, 2009). Generally, a 10 bootstrap replicates is
enough to improve the classification. Finally, the bootstrap aggregating methods use a
plurality vote to determine the predicting class (Leo, 1996). In summary, they follow

three basic steps that are re-sampling, building ensembles, and vote.

20



The algorithms of this category do not need weight computation. Therefore, they are
easier to integrate with data pre-processing methods (Galar, Fernandez, Barrenechea,

Bustince, & Herrera, 2011).

The general parameter specification used for Bagging algorithms is shown in Table

3.8.

Table 3.8: Parameter specification for all the Bagging Algorithms used in this study

Parameters Value
Pruned True
Confidence 0.25
Instances per Leaf 2
Number of Classifiers | 10

3.1.2.2.1 Bagging

The following is the procedure of Bagging algorithm.

Input: S: Training set; 7: Number of iterations;
n. Bootstrap size; I: Weak learner

-
Output: Bagged classifier: H(z) = sign (Z fzt(;zt)) where h; €
t=1

[—1,1] are the induced classifiers

cfort =1t T do
S; + RandomSampleReplacement(n.S)
by ”Si)

end for

B b=

Figure 3.2, Bagging pseudo code (Leo, 1996)

3.1.2.2.2 Over-sampling Minority Classes Bagging 2 with C4.5 Decision Tree as

Base Classifier (OverBagging2)
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OverBagging is a special case of Bagging. In OverBagging the datasets are pre-
processed using an over-sampling technique instead of random sampling (Wang &
Yao, 2009). In this case, the re-sampling doubles the size of the negative instances in

the processed dataset (Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2011).

3.1.2.2.3 Modified Synthetic Minority Over-sampling TEchnique Bagging with
C4.5 Decision Tree as Base Classifier (MSMOTEBagging)
MSMOTE is a modified version of SMOTE and is designed to use the feature space
to generate synthetic instances of the minority class. Likewise, MSMOTE is designed
to generate the synthetic instances of the minority class. The main difference is that
MSMOTE uses the samples’ type as a selection criteria to select its nearest neighbors
(Hu, Liang, He, & Ma, 2009). The MSMOTE procedure is shown in Figure 3.3
below. MSMOTEBagging is an integration of both MSMOTE and Bagging
procedures. In (Hu, Liang, He, & Ma, 2009), their empirical study showed that the

performance of MSMOTE outperformed the performance of SMOTE.

22



Algorithm MSMOTE(L.T, N, k)

Input: All the samples L. The minority class samples T: Amount of
SMOTE N%: Number of nearest neighbors k

Output: synthetic minority class samples (N%*T)

1 k = Number of nearest neighbors

2 N=N%*T //Number of generating samples

3 numattrs = Number of attributes

4 Sample[ ][ |: array for original minority class samples

5 newindex: keeps a count of number of synthetic samples generated,
initialized to O

6 Synthetic[ ][ ]: array for synthetic samples

(Compute k nearest neighbors for each sample)

7 fori=1 to T/{Number of the minority class)

8 Compute Kk nearest neighbors for i, and save the indices in the nnarray
and judge the type of this sample

9 If (type!=0) // O latent noises

10 Populate(N. i. nnarray, type)

11 endfor

12 Populate (N, i, nnarray, type) // (Function to generate the synthetic
samples.}

13 while N_=0

14 If (type==1) //1:secutity samples 2 border samples

15 This step randomly chooses one of the k nearest neighbors of i. call it
nn.

16 else

17 This step chooses the nearest neighbors of 1., call it nn.

18 for attr = 1 to numattrs

19 Compute: dif = Sample[nnarray[nn]][attr] = Sample[i][attr]
20 Compute: gap = random number between 0 and 1

21 Synthetic[newindex ][attr] = Sample[i][attr] + gap* dif

22 endfor

23 newindex++

24N=N= |

25 endwhile

26 return// (End of Populate.)

Figure 3.3, MSMOTE pseudo code (Hu, Liang, He, & Ma, 2009)

3.1.2.2.4 Under-sampling Minority Classes Bagging 2 with C4.5 Decision Tree

as Base Classifier (UnderBagging2)

UnderBagging?2 is a Bagging procedure in which the re-sampling model doubles the

size of the positive instances in the processed dataset.
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3.1.2.2.5 Under-sampling Minority Classes Bagging to Over-sampling Minority
Classes Bagging with C4.5 Decision Tree as Base Classifier
(UnderOverBagging)

UnderOverBagging is a bagging model in which the instances of every bag are treated

using either under-sampling or oversampling technique.

3.2  Experiment Framework

The data was examined under 3 conditions. The first one is without implementation of
any data pre-processing or sampling techniques. The second condition used 5
different over-sampling techniques: ADAptive SYNthetic Sampling (ADASYN),
Random over-sampling (ROS), Synthetic Minority Over-sampling Technique
(SMOTE), Synthetic Minority Over-sampling TEchnique + Tomek's modification of
Condensed Nearest Neighbor (SMOTE_TL), and Selective Preprocessing of
Imbalanced Data 2 (SPIDER2). The third condition used 5 under-sampling
techniques: Neighborhood Cleaning Rule (CNNTL), Class Purity Maximization
(CPM), Neighborhood Cleaning Rule (NCL), Undersampling Based on Clustering

(SBC), and Tomek's modification of Condensed Nearest Neighbor (TL).

The framework described above is showed in Figure 3.4 below.
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Dataset

Data Pre-processing

Classification

eecoli-0_vs_1 *No Pre-Processing ¢COST-SENSITIVE
e\Wisconsin eUnder-Sampling CLASSIFICATION
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eNew-thyroid2 *CPM *C4.5CS
epage-blocks0 eNCL *NNCS
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eGlass5 oTL CLASS IMBALANCE
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eyeast6 «ADASYN *AdaBoostM2
eabalone19 *ROS *AdaC2
*SMOTE *Bagging
«CMOTE_TL *OverBagging2
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eUnderBagging?2
eUnderOverBagging
. J . J . J

Figure 3.4, Framework of experiment

3.3  Validation

In order to evaluate the association of pre-processing techniques and the classifiers’
performance, the five-fold cross validation CV and the global classification Area
Under the ROC Curve AUC were calculated. The AUC evaluates the classifier’s
ability to separate between the positive and negative classes. Therefore, it is the best
measurement of the imbalanced data classification performance; consequently it is the

best measurement that suites this experiment.

3.4  Experimental Results

Depending on the AUC measurement, the performance of each sampling technique
was investigated. The following is the average performance of non-Sampling, over-
Sampling, and under-Sampling, calculated the average of all sampling techniques for
each dataset using the best performance of each combination of sampling and

classification model for each sampling technique.
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The study revealed that the performance of pre-processing models are mainly affected
by the degree of imbalance of the dataset. It also showed that the data pre-processing
models was not significantly affected by the number of instances. Generally, the NCL
performed the best in datasets with relatively small IR. This result confirms the results
of (Laurikkala, 2001) that argued that NCL improves small class modeling. On the
other hand, SMOTE and SMOTE_TL performed best in relatively high IR datasets.
Table 3.9 shows the best combination of both data preprocessing models and

classifiers for each dataset. The table is sorted in ascending order based on IR value.

Table 3.9: Data pre-processing and imbalanced models
the best performance for each dataset

DATASET IR # OF BEST COMBAINATION
INSTANCES
ecoli-0_vs 1 1.86 220 NCL + Bagging
Wisconsin 1.86 683 NCL + AdaC2
vehiclel 3.23 846 TL + SVMCS
New- 5.14 215 NCL + SVMCS
thyroid2
page- 8.77 5472
blocks0
Vowel0 10.1 988 ADASYN + [AdaBoost, AdaBoostM2, AdaC2]
Glassb 15.47 214 CNN_TL + AdaC2
Glass6 22.81 214 SMOTE_TL + AdaC2
yeast6 32.78 1484 SMOTE + SVMCS
abalonel9 128.87 4174 SMOTE +NNCS

Figure 3.5 below shows an evaluation of the performance of different classifiers
against non-sampled imbalanced dataset. The results emphasize the negative effect of
IR on a non-preprocessed dataset. The figure also shows that the number of features
and the sample size contribute to the classification performance , the possible reason
for the drop in balance in the third dataset vehiclel, IR 3.23, is the relatively high
number of features and instances, 18 feature and 846 instances.
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Figure 3.5, Non-sampling average performances

The over-Sampling average performance showed an overall similar curve to the non-
sampled datasets. On the other hand, the under-sampling performance demonstrated
lower overall performance. However, unlike the non-sampled and oversampled

datasets, it showed a steady performance against relatively high IR as shown in Figure

3.6.
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Under-Sampling Average Performance
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Figure 3.6, Over-sampling and under-sampling average performances

The results demonstrated above and the results shown earlier were motivation to

investigate and improve the under-sampling model NCL. A possible reason for the

lower performance is that the NCL model removes an informative data more than

needed. The model shows a high performance in relatively small IR. The objective is

to introduce enhancments to make it scale better with IR. In the following chapter, the

proposal (named NCL+) is discussed in detailes. Then an empirical study is

conducted to evaluate the relative performance of the proposal to the original model.
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CHAPTER 4

Proposed NCL+ Method

41  NCL+ Method

The proposed improvement of NCL follows similar architecture of the NCL. The data
reduction process will be held in two phases. In the first phase, the ENN will be used
to create a subset named A;. The second phase will be modified to employ an
evolutionary instance selection algorithm CHC to create the second subset named A, .

Finally, A; U A, will be removed from the original dataset as illustrated in Figure 4.1.
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NCL+ 1. Split the dataset T into the class of interest C and the rest of data O
Pseudo 2. For the subset O do the following:

1. Using ENN identify the noisy data and insert them to subset A

2. Run CHC with the following spesifications:
Euclidean Distance Function

Fitness Function:
Fitness (S) =x.Clas,qe + (1 —).perc_red

where: S is a subset of the data set
Alfa equilibrate factor « = 0.5
Clas_rate : classification rate
Perc_red: persentage of reduction
3. insert the result into subset A,
4. Reduce the dataset S = T — (4; U Ay

Figure 4.1, Pseudo code of proposed NCL+ method

In many cases there could be too much data. However, generally, the data is not
equally informative during the training phase. Thus, algorithms such as the CHC
(Eshelman, 1990) were developed to interpret the data independently of their location
in the search space. Also, the CHC chooses the most representative instances.
Consequently, it gains high reduction rates while maintaining the accuracy.
Furthermore, (Cano, Herrera, & Lozano, 2003) showed that CHC gained the best
ranking in data reduction rates.

The CHC relies on reducing the data by means of evolutionary algorithm EA and
instance selection IS. The EAs are adaptive models that rely on the principle of
natural evolution. In the CHC, an EA is used as instance selector to select the data to
be removed. The decision-tree induction algorithm C4.5 is built using the selected

instances. Then the new examples are classified using the resultant tree.
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In particular, during every generation, the CHC follow some basic steps that can be
summarized as the following: First, it generates an intermediate population of size N
using the parent population of size N. Then it randomly pairs them and use them to
produce N potential offspring. Then a survival competition is held in order to select
the next generation population. The best N from the parent population and offspring

are selected to form the next generation (Cano, Herrera, & Lozano, 2003).

Table 4.1 shows the CHC parameters used in the empirical study

Table 4.1: CHC parameters

Population Size 50
Number of Evaluations 10000
Alfa Equilibrate Factor 0.5
Percentage of Change in Restart | 0.35

0 to 1 Probability in restart 0.25

0 to 1 Probability in Diverge 0.05
Number of Neighbors 3
Distance Function Euclidean

4.2  Experimental Results on NCL+

The initial results showed a recognizable improvement in the performance for the
NCL+ over the NCL with respect to IR. In some cases, the performance was close.
However, the target was to improve the model to enhance its scalability with respect

to IR. Table 4.2 shows a comparison between the two models and the improvement.

Table 4.2: Performance using relatively high IR dataset

Data Set Abalonel9

IR 128.87

# of Instances 4147

Model AUC4NCL AUCg
NCL+

C_SVMCS-I 0.760457 0.797602

C4.5CS-1 0.548425 0.799648

NNCS-I 0.507473 0.508451

AdaBoost-| 0.515339 0.799035
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AdaBoostM2-1 0.51558 0.799155
AdaC2-1 0.554457 0.799648
Bagging-I 0.5 0.5
OverBagging2-I 0.529512 0.791638
MSMOTEBagging-| 0.579465 0.795147
UnderBagging2-I 0.71252 0.732963
UnderOverBagging-I 0.547419 0.791638
AVERAGE 0.570059 0.73772

Results also suggest that under-sampling could be further improved using adaptive
learning and evolutionary training set selection algorithms such as CHC, Generational
Genetic Algorithm for Instance Selection GGA, and Population-Based Incremental
Learning PBI. Figure 4.2 demonstrates the difference between NCL and NCL+. It
shows the average AUC,; for both models over the 11 classifiers and under the 11
previously reviewed sampling methods. Table 4.3 shows the average numerical values

of AUC,.of both NCL and NCL+

Average Performance

1.2

0.8 -

Percentage
o
[e)]
]
|

0.4 NCL
0.2 == CHC_NCL
0
A S DD XD O g0
AN NS R AP N L A
IR

Figure 4.2, Average Performance of NCL and the NCL+.

Table 4.3: NCL and NCL+ Average performance

IR 128.87 32.78 22.81 15.47 10.1 5.14 3.23 1.86 1.86
NCL 0.570059 | 0.815282 | 0.902482 | 0.935809 | 0.929885 | 0.944949 | 0.756345 | 0.96757 | 0.973403
NCL+ 0.73772 | 0.85761 | 0.900066 | 0.929047 | 0.961053 | 0.96728 | 0.841288 | 0.975394 | 0.983174
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Looking at the data distribution of processed data of both models and given the
dataset size. It is noticeable the CHC does not operate on quantity. It removed
relatively few samples. However, the removed samples noticeably enhanced the
classification. The difference in data distribution is shown in both Figure 4.3 and

Figure 4.4.
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Figure 4.3, Class distribution using the NCL+
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Figure 4.4, Class distribution using the NCL

CHAPTER 5

Conclusion
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In this research, an empirical study was conducted using 11 UCI datasets with 11
classifiers under 3 different data pre-processing methods. The results suggested that
the IR influences the performance of the preprocessing models. Basically, NCL was
successfully operating on datasets that had a relatively small IR. Then, an
improvement to the NCL was suggested, to scale better with IR. Subsequently, a
comparison study between the NCL and the proposed improvement was conducted.
The results showed the suggested improvement outperformed the NCL on relatively
larger IRs. This research was focusing on imbalanced binary datasets. However, there
is a difference between a binary and a multiclass classification. Thus, for a future
work it is planned to study the effect of multiclass datasets with different IRs on

reviewed combinations of pre-processing and classification models.
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APPENDIX A

Detailed Experimental Results

A.1  Performance of Different Classifiers on Different Datasets

The results in all the tables included in the appendix will be sorted according to the

following classifiers

Table 6.1:

Classifiers and their codes (for future references in the later tables).
Code | Classifier

C1 C_SVMCS-I

C2 C4.5CS-l

Cc2 NNCS-I

C3 AdaBoost-I

C4 AdaBoostM2-1

C5 AdaC2-1

C6 Bagging-I

C7 OverBagging2-1

C8 MSMOTEBagging-I

C9 UnderBagging2-1

C10 UnderOverBagging-I

Cl1 MAX AUC for each sampling Technique
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Abalonel9

Table 6.2: Abalonel19 without sampling

Classifier WITHOUT-
SAMPLING
C1 0.761543276
C2 0.570075469
C2 0.499617743
C3 0.498672663
C4 0.499034545
C5 0.508464013
C6 0.5
C7 0.53542739
C8 0.551684349
C9 0.641058473
C10
Cl1 0.761543276

Table 6.3: Abalonel9 over-sampling

Classifier ADASYN-I ROS-I SMOTE-I SMOTE_TL-I | SPIDER2-I
C1 0.057461543 0.7642 0.765444119 | 0.764236535 0.7760704
C2 0.546253354 0.559257 0.596327757 | 0.606001539 0.501096
C2 0.764806039 0.681044 0.789638168 | 0.780828008 0.5894157
C3 0.507283797 0.496741 0.538566904 | 0.536273092 0.4986722
C4 0.507405007 0.494809 0.538808304 | 0.550559243 0.4986722
C5 0.50692177 0.496741 0.537119231 | 0.535219331 0.5262114
C6 0.529271612 0.536031 0.52676843 | 0.555515305 0.5152187
Cc7 0.529271612 0.536031 0.52676843 | 0.556722306 0.5496254
c8 0.673826735 0.67515 0.5662039
C9 0.529271612 0.536031 0.52676843 | 0.538485737 0.5741403
C10 0.52057698 0.566655 0.55032469 | 0.529674702 0.5023347
C11 0.764806039 0.7642 0.789638168 | 0.780828008 0.7760704
Table 6.4: Abalonel9 under-sampling
Classifier | CNNTL- | CPM-I NCL-I RUS-I TL-I
I

C1 0.552891 | 0.603229235 | 0.760457 | 0.646771 | 0.761423

C2 0.486525 | 0.509782754 | 0.548425 | 0.547487 | 0.568988

C2 0.54408 | 0.564040943 | 0.507473 | 0.592433 | 0.616639

C3 0.442944 | 0.501729844 | 0.515339 | 0.672402 | 0.5157

C4 0.442944 | 0.502333709 | 0.51558 | 0.672402 | 0.51558
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C5 0.548913 | 0.512158087 | 0.554457 | 0.672402 | 0.511232
C6 0.575822 0.5 0.5 | 0.657494 0.5
Cc7 0.550602 | 0.549388809 | 0.529512 | 0.657494 | 0.520297
C8 0.54101 | 0.52121739 | 0.579465 | 0.714439 | 0.583001
C9 0.553289 | 0.574570541 | 0.71252 | 0.657494 | 0.657445
C10 0.58764 | 0.474540655 | 0.547419 | 0.692468 | 0.548265
Ci11
ecoli-0_vs 1
Table 6.5: ecoli-0_vs_1 without sampling
Classifier | 0.979647
C1 0.983218
C2 0.979647
C2 0.969179
C3 0.972627
C4 0.969179
C5 0.983218
C6 0.979647
C7 0.983218
C8 0.969302
C9 0.969302
C10
C11
Table 6.6: ecoli-0_vs_1 over-sampling
Classifier | ADASYN-| ROS-1 | SMOTE- | SMOTE_TL- | SPIDER2-I
I I [
C1 0.969179 | 0.983218 | 0.979647 0.976199 | 0.969178982
C2 0.948596 | 0.97275 | 0.983218 0.976076 | 0.958587849
C2 0.954663 | 0.969286 | 0.972627 0.966254 | 0.948596059
C3 0.955263 | 0.965731 | 0.972627 0.969179 | 0.979770115
C4 0.955263 | 0.965731 | 0.972627 0.965608 | 0.979770115
C5 0.955263 | 0.965731 | 0.972627 0.87275 | 0.972627258
C6 0.958711 | 0.983218 | 0.97977 0.979647 | 0.972627258
Cc7 0.958711 | 0.983218 | 0.97977 0.976076 | 0.965607553
C8 0.969302 | 0.958711002
C9 0.958711 | 0.983218 | 0.97977 0.976076 | 0.962159278
C10 0.944918 | 0.969302 | 0.969302 0.969302 | 0.958711002
Cl1
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Table 6.7: ecoli-0_vs_1 under-sampling

Classifier | CNNTL-I | CPM-I NCL-I RUS-I TL-I
C1 0.973103 | 0.953044 | 0.976199 | 0.970302 | 0.979647
Cc2 0.927693 | 0.968933 | 0.958588 | 0.979647 | 0.962159
Cc2 0.915993 | 0.949179 | 0.969056 | 0.972627 | 0.969056
C3 0.867348 | 0.955016 | 0.972874 | 0.969179 | 0.969425
C4 0.867348 | 0.958588 | 0.972874 | 0.969179 | 0.969425
C5 0.888038 | 0.958588 | 0.969425 | 0.969179 | 0.969425
C6 0.923998 | 0.955156 | 0.983218 | 0.979647 | 0.979647
c7 0.906264 | 0.969072 | 0.976076 | 0.979647 | 0.976076
C8 0.972504
C9 0.9139 | 0.958727 | 0.979647 | 0.979647 | 0.969302
C10 0.927693 | 0.962299 | 0.976076 | 0.965854 | 0.965731
Cl1
Vehiclel
Table 6.8: Vehiclel without sampling
Classifier 0.809846069
Cl 0.701320024
C2 0.609432008
C2 0.671699386
C3 0.705843968
C4 0.753546018
C5 0.655084963
C6 0.736612161
C7 0.714633733
C8 0.74053189
C9 0.757555589
C10
Cl1
Table 6.9: Vehiclel over-sampling
Classifier | ADASYN-1 | ROS-I | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.812409 | 0.81304 | 0.807017 | 0.813036498 | 0.798957
Cc2 0.724089 | 0.732577 | 0.683535 | 0.720588402 0.7173
c2 0.614989 | 0.629241 | 0.589951 | 0.632309017 | 0.663756
C3 0.745741 | 0.703243 | 0.733039 | 0.768999651 | 0.721059
C4 0.750281 | 0.697044 | 0.719992 | 0.777455472 0.70864
C5 0.740482 | 0.678038 | 0.72385 0.77335777 | 0.689391
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C6 0.776692 | 0.727257 | 0.742318 | 0.756978295 | 0.728721
c7 0.776692 | 0.727257 | 0.742318 | 0.774716037 | 0.735862
C8 0.717685318
C9 0.776692 | 0.727257 | 0.742318 | 0.778147743 | 0.739842
C10 0.768646 | 0.746413 | 0.749924 | 0.763606987 | 0.739787
Cl1
Table 6.10: Vehiclel under-sampling
Classifier | CNNTL-I | CPM-I NCL-I SBC-I TL-I
C1 0.799488 | 0.769965 | 0.814785 | 0.793484 | 0.816338
C2 0.690269 | 0.651984 | 0.754904 | 0.684821 | 0.754079
C2 0.587593 | 0.570157 | 0.648809 | 0.627449 | 0.634085
C3 0.745877 | 0.647688 | 0.760709 | 0.717169 | 0.770541
Cc4 0.746504 | 0.662545 | 0.753946 | 0.722641 | 0.781375
C5 0.726976 | 0.710674 | 0.783584 | 0.717428 | 0.760392
C6 0.751798 | 0.652673 | 0.761187 | 0.707724 | 0.745268
Cc7 0.732673 | 0.672227 | 0.763921 | 0.706366 | 0.757114
C8 0.749855 | 0.708195 | 0.731965 | 0.714532 | 0.738829
C9 0.735353 | 0.692745 | 0.766007 | 0.708955 | 0.773805
C10 0.730848 | 0.697268 | 0.77998 | 0.720981 | 0.769064
Cl1
yeast6
Table 6.11: yeast6 without sampling
Classifier | 0.875775
C1 0.808215
Cc2 0.542195
Cc2 0.738026
C3 0.752657
C4 0.71627
C5 0.669011
C6 0.801865
Cc7 0.859151
C8 0.86645
C9 0.811667
C10
Cl1
Table 6.12: yeast6 over-sampling
Classifier | ADASYN-1 | ROS-I | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.862796 | 0.87405| 0.88661 0.871634 | 0.869841
C2 0.802002 | 0.803389 | 0.834151 0.81608 | 0.824913
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C2 0.853278 | 0.870262 | 0.819061 0.806214 | 0.579728
C3 0.801866 | 0.694823 | 0.816493 0.812009 | 0.806696
C4 0.802211 | 0.723049 | 0.815458 0.812009 | 0.792756
C5 0.802211 | 0.708764 | 0.816148 0.798415 | 0.797038
C6 0.818013 | 0.801862 | 0.834024 0.817323 | 0.832506
Cc7 0.818013 | 0.801862 | 0.834024 0.830918 | 0.809247
C8 0.834492 | 0.872531 | 0.839682 0.836577 | 0.845893
C9 0.818013 | 0.801862 | 0.834024 0.830918 0.8715
C10 0.812839 | 0.800483 | 0.829194 0.856041 | 0.836436
C11
Table 6.13: yeast6 under-sampling

Classifier | CNNTL-I | CPM-I NCL-I SBC-I | TL-I

C1 0.870945 | 0.87646 | 0.874049 0.87543

C2 0.627274 | 0.768676 | 0.846242 0.846927

Cc2 0.828441 | 0.774003 | 0.718246 0.643485

C3 0.804008 | 0.739202 | 0.792754 0.810834

C4 0.776077 | 0.750381 | 0.792754 0.810489

C5 0.746729 | 0.569852 | 0.792705 0.784281

Cé6 0.774617 | 0.641132 | 0.781572 0.769357

c7 0.760718 | 0.856179 | 0.814083 0.814079

C8 0.796238 | 0.841545 | 0.851761 0.825604

C9 0.812629 | 0.823475 | 0.867498 0.853903

C10 0.793868 | 0.830227 | 0.836442 0.824919

C11

page-blocksO

Table 6.14: page-blocks0O without sampling

Classifier | 0.925361
C1 0.94579
C2 0.762835
C2 0.930295
C3

C4 0.881564
C5 0.930021
C6 0.948444
C7

C8 0.960127
C9 0.952746
C10

Cl11

Table 6.15: page-blocks0 over-sampling
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Classifier | ADASYN-| ROS-I
I
C1
C2 0.929913 | 0.933758
Cc2 0.784548 | 0.828767
C3 0.938714
C4 0.938214 | 0.933725
C5 0.943775 0.9349
C6 0.943042 | 0.94178
Cc7 0.943042 | 0.94178
C8
C9
C10
Cl1
Wisconsin
Table 6.16: Wisconsin without sampling
Classifier | 0.97074
C1 0.963632
C2 0.958196
Cc2 0.966561
C3 0.965614
C4 0.965273
C5 0.960191
C6 0.961119
c7 0.963366
C8 0.964105
C9 0.965286
C10
Cl1
Table 6.17: Wisconsin over-sampling
Classifier | ADASYN-1 | ROS-I | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.974434 | 0.97074 | 0.97074 0.971195 | 0.973487
C2 0.95814 | 0.94903 | 0.957868 0.964945 | 0.965773
Cc2 0.948694 | 0.941857 | 0.948151 0.938353 | 0.965569
C3 0.966056 | 0.958063 | 0.964313 0.961902 | 0.973607
C4 0.96814 | 0.958063 | 0.964313 0.96415 | 0.975734
C5 0.966056 | 0.96319 | 0.966397 0.972496 | 0.973487
C6 0.967869 | 0.962243 | 0.962199 0.972527 | 0.971568
c7 0.953224 | 0.962243 | 0.962199 0.969276 | 0.966069
c8 0.958355 | 0.966082 | 0.962553 0.964649 | 0.962553
C9 0.962389 | 0.962243 | 0.962199 0.973487 | 0.968361
C10 0.967869 | 0.971523 | 0.970576 0.963853 | 0.973487
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| Cl11

Table 6.18: Wisconsin under-sampling

Classifier | CNNTL-I | CPM-I NCL-I SBC-I TL-I
C1 0.970059 | 0.945696 | 0.971359 0.5]0.971195
Cc2 0.939815 | 0.903423 | 0.956948 | 0.380363 | 0.951954
Cc2 0.594887 | 0.912765 | 0.964446 | 0.380363 | 0.962362
C3 0.94628 | 0.91901 | 0.970444 0.967577
C4 0.947404 | 0.90651 | 0.970444 0.967577
C5 0.905288 | 0.874804 | 0.978777 0.9704
C6 0.928152 | 0.953582 | 0.96932 0.961315
c7 0.946319 | 0.940172 | 0.97028 0.967357
C8 0.957023 | 0.860014 | 0.95874 0.96641
C9 0.936311 0.962111 0.964933
C10 0.954196 | 0.93865 0.9704 0.962956
Cl1
VowelO
Table 6.19: Vowel0 without sampling
Classifier | 0.970509
C1 0.942194
Cc2 0.694401
Cc2 0.970556
C3 0.970556
C4 0.970556
C5 0.971111
C6 0.968318
c7 0.981654
C8 0.950509
C9 0.9622
C10
Cl1
Table 6.20: Vowel0 over-sampling
Classifier | ADASYN-1 | ROS-I | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.961567 | 0.966068 | 0.966614 0.968287 | 0.953281
Cc2 0.968849 | 0.956654 | 0.971639 0.982197 | 0.941077
Cc2 0.806484 | 0.85879 | 0.894891 0.830422 | 0.725435
C3 0.988876 | 0.956654 | 0.976092 0.988873 | 0.970556
C4 0.988876 | 0.956654 | 0.974981 0.988873 | 0.970556
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C5 0.988876 | 0.956654 | 0.976092 0.988873 | 0.970556
C6 0.981096 | 0.954988 | 0.980543 0.987768 | 0.953886
Cc7 0.981096 | 0.954988 | 0.980543 0.987768 | 0.967765
C8 0.957694 | 0.946605 | 0.953793 0.957145 | 0.947207
C9 0.981096 | 0.954988 | 0.980543 0.987768 | 0.947188
C10 0.977753 | 0.96554 | 0.983315 0.982197 | 0.962762
C11
Table 6.21: Vowel0 under-sampling
Classifier | CNNTL-I | CPM-I NCL-I SBC-I TL-I
C1 0.942173 | 0.901657 | 0.962728 0.970509
C2 0.920534 | 0.895472 | 0.942194 | 0.756086 | 0.942194
C2 0.814395 | 0.752505 | 0.663935 | 0.592259 | 0.678277
C3 0.946645 | 0.853876 | 0.969997 0.970556
C4 0.946645 | 0.853876 | 0.969997 0.970556
C5 0.941089 | 0.91212 | 0.958327 0.970556
C6 0.931642 | 0.878318 | 0.929988 0.971111
Cc7 0.92554 | 0.924407 | 0.964435
C8 0.94388 | 0.903845 | 0.95888 0.952204
C9 0.924978 | 0.892204 | 0.947166 0.950509
C10 0.92387 | 0.888296 | 0.961086 0.9622
Cl1
Glass6
Table 6.22: Glass6 without sampling
Classifier | 0.911712
C1 0.88964
C2 0.915315
C2 0.872523
C3 0.872523
C4 0.88964
C5 0.86982
C6 0.897748
c7 0.933784
C8 0.917568
C9 0.928378
C10
C11
Table 6.23: Glass6 over-sampling
Classifier | ADASYN-1 | ROS-1 | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.882432 | 0.925676 | 0.925676 | 0.925675676 | 0.906306

44




C2 0.89009 | 0.878378 | 0.892342 | 0.896486486 | 0.928378
C2 0.874324 | 0.893784 | 0.857748 | 0.888378378 | 0.925495
C3 0.931081 | 0.886486 | 0.855045 | 0.871711712 | 0.917117
C4 0.928378 | 0.886486 | 0.855045 | 0.892342342 | 0.917117
C5 0.928378 | 0.886486 | 0.855045 | 0.933783784 | 0.896486
Cé 0.877568 | 0.897748 | 0.897748 | 0.931081081 0.91982
C7 0.877568 | 0.897748 | 0.897748 | 0.917117117 0.917117
Cc8 0.890541 | 0.928378 | 0.92027 | 0.917567568 | 0.914865
C9 0.877568 | 0.897748 | 0.897748 | 0.931081081 | 0.866757
C10 0.907207 | 0.933784 | 0.917568 | 0.928378378 | 0.917568
Cl1
Table 6.24: Glass6 over-sampling
Classifier | CNNTL-I | CPM-I NCL-I SBC-I TL-I
Cl 0.922973 | 0.781532 | 0.911712 0.917117
c2 0.693243 | 0.691441 | 0.923423 05| 0.92027
C2 0.803694 | 0.836126 | 0.893694 | 0.237838 0.83
C3 0.771622 | 0.773874 | 0.922973 0.925225
C4 0.771622 | 0.776577 | 0.885676 0.925225
C5 0.787838 | 0.795495 | 0.866757 0.89964
C6 0.760811 | 0.595045 | 0.871712 0.882523
Cc7 0.841441 | 0.542342 | 0.914865 0.914414
C8 0.792342 0.917568 0.925676
C9 0.904054 | 0.452703 | 0.909459 0.914865
C10 0.846847 | 0.641892 | 0.909459 0.92027
Cl1
Glass5

Table 6.25: Glass5 without sampling

Classifier | 0.973171
C1 0.942683
C2 0.853659
C2 0.947561
C3 0.947561
C4 0.973171
C5 0.795122
C6 0.887805
C7 0.840244
C8 0.94878
C9 0.987805
C10

Cl11
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Table 6.26: Glass5 over-sampling

Classifier | ADASYN-1 | ROS-1 | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.946341 | 0.968293 0.941463 | 0.934146
C2 0.893902 | 0.787805 | 0.953659 0.84878 0.79878
Cc2 0.907317 | 0.915854 | 0.879268 0.876829 | 0.885366
C3 0.915854 | 0.847561 | 0.880488 0.920732 | 0.842683
C4 0.920732 | 0.847561 | 0.880488 0.920732 | 0.842683
C5 0.868293 | 0.847561 | 0.880488 0.92561 | 0.928049
C6 0.920732 | 0.920732 | 0.965854 0.918293 | 0.990244
Cc7 0.920732 | 0.840244 | 0.965854 0.973171 | 0.878049
C8 0.881707 | 0.985366 | 0.931707 0.889024 | 0.815854
C9 0.920732 | 0.840244 | 0.965854 0.915854 | 0.871951
C10 0.915854 | 0.940244 | 0.968293 0.908537 | 0.878049
C11
Table 6.27: Glass5 under-sampling
Classifier | CNNTL-I | CPM-I NCL-I SBC-I TL-I
C1 0.929268 | 0.796341 | 0.953659 0.973171
C2 0.963415 | 0.903659 | 0.987805 0.5 | 0.940244
C2 0.902439 | 0.797561 | 0.853659 | 0.513415 | 0.846341
C3 0.937805 | 0.842683 | 0.937805 0.890244
C4 0.937805 | 0.842683 | 0.937805 0.890244
C5 0.995122 | 0.858537 | 0.92561 0.970732
C6 0.870732 | 0.908537 | 0.940244 0.837805
c7 0.968293 | 0.960976 | 0.890244 0.887805
C8 0.84878 0.978049 0.987805
C9 0.963415 | 0.797561 | 0.94878 0.94878
C10 0.960976 | 0.94878 | 0.940244 0.990244
Cl1
New-thyroid2
Table 6.28: New-thyroid2 without sampling
Classifier | 0.982937
C1 0.980159
C2 0.980159
C2 0.937302
C3 0.951587
C4 0.95754
C5 0.925794
C6 0.934524
c7 0.946032
C8 0.935317
C9 0.923413
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C10

Cl1

Table 6.29: New-thyroid2 over-sampling

Classifier | ADASYN-1 | ROS-1 | SMOTE-I | SMOTE_TL-I | SPIDER2-I
C1 0.983333 | 0.982937 | 0.977778 0.961111 | 0.980159
C2 0.963889 | 0.931746 | 0.944048 0.935714 | 0.940079
C2 0.963889 | 0.960317 | 0.983333 0.972222 | 0.882143
C3 0.986111 | 0.934524 | 0.954762 0.963492 | 0.931746
C4 0.986111 | 0.934524 | 0.963492 0.963492 | 0.931746
C5 0.986111 | 0.934524 | 0.954762 0.960714 | 0.925794
C6 0.986111 | 0.928968 | 0.957937 0.980556 | 0.923016
C7 0.986111 | 0.928968 | 0.957937 0.955159 0.94881
C8 0.972222 | 0.946032 | 0.969444 0.961111 | 0.963095
C9 0.986111 | 0.928968 | 0.957937 0.975| 0.943651
C10 0.972222 | 0.926587 | 0.96627 0.975 0.94881
C11
Table 6.30: New-thyroid2 under-sampling
Classifier | CNNTL- | CPM-I NCL-I SBC-I TL-I
I

C1 0.954762 | 0.977381 | 0.997222 0.982937

Cc2 0.926984 | 0.835317 | 0.94881 0.5 | 0.963095

C2 0.929365 | 0.944048 | 0.932937 | 0.442063 | 0.899603

C3 0.969444 | 0.795238 | 0.946032 0.934524

C4 0.969444 | 0.795238 | 0.94881 0.923016

C5 0.946429 | 0.795238 | 0.951984 0.931746

C6 0.904762 | 0.838095 | 0.940079 0.943254

Cc7 0.926984 | 0.838095 | 0.92619 0.931746

C8 0.92381 0.943254 0.951984

C9 0.909524 | 0.809524 | 0.918254 0.92381

C10 0.93254 | 0.798016 | 0.940873 0.920635

Cl1
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A2

NCL vs. NCL+ Comparison

Table 6.31; Abalonel9 NCL&NCL+

Data Set Abalonel9
Model NCL NCL+
C_SVMCS-I 0.760457 | 0.797602
C4.5CS-I 0.548425 | 0.799648
NNCS-I 0.507473 | 0.508451
AdaBoost-I 0.515339 | 0.799035
AdaBoostM2-| 0.51558 | 0.799155
AdaC2-1 0.554457 | 0.799648
Bagging-| 0.5 0.5
OverBagging2-I 0.529512 | 0.791638
MSMOTEBagging-1 | 0.579465 | 0.795147
UnderBagging2-1 0.71252 | 0.732963
UnderOverBagging-1 | 0.547419 | 0.791638

Table 6.32: yeast6 NCL & NCL+

Data Set yeast6

Model NCL NCL+
C_SVMCS-I 0.874049 | 0.880263
C4.5CS- 0.846242 | 0.907171
NNCS-I 0.718246 | 0.620673
AdaBoost-I 0.792754 | 0.896202
AdaBoostM2-1 0.792754 | 0.896202
AdaC2-1 0.792705 | 0.886339
Bagging-I 0.781572 | 0.797929
OverBagging2-I 0.814083 | 0.888614
MSMOTEBagging-l | 0.851761 | 0.888405
UnderBagging2-1 0.867498 | 0.888131
UnderOverBagging-1 | 0.836442 | 0.883782

Table 6.33: Glass6 NCL & NCL+

Data Set Glassb

Model NCL NCL+
C_SVMCS-I 0.911712 | 0.911712
C4.5CS-1 0.923423 | 0.88964
NNCS-I 0.893694 | 0.901802
AdaBoost-I 0.922973 | 0.885225
AdaBoostM2-I 0.885676 | 0.875225
AdaC2-1 0.866757 | 0.89964
Bagging-| 0.871712 | 0.82982
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OverBagging2-1 0.914865 | 0.91982
MSMOTEBagging-I | 0.917568 | 0.936486
UnderBagging2-1 0.909459 | 0.925676
UnderOverBagging-I | 0.909459 | 0.925676

Table 6.34: Glass5 NCL & NCL+

Data Set Glassb

Model NCL NCL+
C_SVMCS-I 0.953659 | 0.973171
C4.5CS-I 0.987805 | 0.942683
NNCS-I 0.853659 | 0.880488
AdaBoost-I 0.937805 | 0.947561
AdaBoostM2-1 0.937805 | 0.947561
AdaC2-1 0.92561 | 0.973171
Bagging-I 0.940244 | 0.840244
OverBagging2-1 0.890244 | 0.887805
MSMOTEBagging-1 | 0.978049 | 0.887805
UnderBagging2-1 0.94878 | 0.94878
UnderOverBagging-1 | 0.940244 | 0.990244

Table 6.35: New-thyroid2 NCL & NCL+

Data Set New-thyroid2
Model NCL NCL+
C_SVMCS-I 0.997222 | 0.997222
C4.5CS- 0.94881 | 0.988889
NNCS-I 0.932937 | 0.851587
AdaBoost-1 0.946032 | 0.997222
AdaBoostM2-1 0.94881 | 0.997222
AdaC2-1 0.951984 | 0.986111
Bagging-I 0.940079 | 0.94881
OverBagging2-1 0.92619 | 0.963095
MSMOTEBagging-I | 0.943254 | 0.983333
UnderBagging2-1 0.918254 | 0.95754
UnderOverBagging-I | 0.940873 | 0.969048

Table 6.36:Vowel0 NCL & NCL+

Data Set Vowel0

Model NCL NCL+
C_SVMCS-I 0.962728 | 0.971611
C4.5CS-1 0.942194 | 0.983315
NNCS-I 0.663935 | 0.708976
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AdaBoost-I 0.969997 | 0.988333
AdaBoostM2-| 0.969997 | 0.988333
AdaC2-1 0.958327 | 0.987222
Bagging-I 0.929988 | 0.987778
OverBagging2-I 0.964435 | 0.996102
MSMOTEBagging-1 | 0.95888 | 0.993318
UnderBagging2-1 0.947166 | 0.976611
UnderOverBagging-1 | 0.961086 | 0.989981

Table 6.37: vehiclel NCL & NCL+

Data Set vehiclel
Model NCL NCL+

C_SVMCS-I 0.814785 | 0.81837
C4.5CS-I 0.754904 | 0.863875
NNCS-I 0.648809 | 0.602263
AdaBoost-1 0.760709 | 0.909126
AdaBoostM2-1 0.753946 | 0.911452
AdaC2-I 0.783584 | 0.887962
Bagging-I 0.761187 | 0.883528
OverBagging2-I 0.763921 | 0.874451
MSMOTEBagging-1 | 0.731965 | 0.804011
UnderBagging2-1 | 0.766007 | 0.854458
UnderOverBagging-1 | 0.77998 | 0.844671

Table 6.38: Wisconsin NCL & NCL+

Data Set Wisconsin
Model NCL NCL+
C_SVMCS-I 0.971359 | 0.979118
C4.5CS- 0.956948 | 0.97124
NNCS-I 0.964446 | 0.969825
AdaBoost-I 0.970444 | 0.981365
AdaBoostM2-| 0.970444 | 0.979118
AdaC2-1 0.978777 | 0.979118
Bagging-I 0.96932 | 0.973815
OverBagging2-I 0.97028 | 0.979901
MSMOTEBagging-1 | 0.95874 | 0.970621
UnderBagging2-1 0.962111 | 0.972527
UnderOverBagging-1 | 0.9704 | 0.972691
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Table 6.39: ecoli-0_vs 1 NCL & NCL+

Data Set ecoli-0_vs_1

Model NCL NCL+
C_SVMCS-I 0.976199 | 0.979647
C4.5CS- 0.958588 | 0.986667
NNCS-I 0.969056 | 0.979524
AdaBoost-I 0.972874 | 0.97977
AdaBoostM2-| 0.972874 | 0.983218
AdaC2-1 0.969425 | 0.97977
Bagging-I 0.983218 | 0.986667
OverBagging2-I 0.976076 | 0.986667
MSMOTEBagging-I 0.986667
UnderBagging2-1 0.979647 | 0.983095
UnderOverBagging-1 | 0.976076 | 0.983218

Table 6.40: NCL & NCL+ Average performance is shows the average performance
comparison between NCL and NCL+. The table is sorted based on IR value.

Table 6.40: NCL & NCL+ Average performance

IR AUC,NCL [ AUC,NCL+
128.87 | 0.570059 0.73772
32.78 | 0.815282 0.85761
22.81| 0.902482 |  0.900066
1547 | 0.935809 |  0.929047
101 0.929885| 0.961053
514 | 0.944949 0.96728
3.23| 0.756345| 0.841288
1.86| 096757 | 0.975394
1.86| 0.973403| 0.983174
Average | 0.866198 |  0.905848
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